MATH 160 Homework 19 Solution

1. a. First note that the limit is of the indeterminate form 0/0, so we can apply ’'Hopital’s Rule.
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Once again we need to apply I’'Hopital’s Rule. We find
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b. This limit is not in an indeterminate form, so we cannot apply I’Hopital’s Rule. Since z is
increasing to 7, the denominator is negative, so we find that
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c. Since the order of the polynomial in the denominator is larger than that in the numerator,
the limit is 0. Using I'Hopital’s Rule (noting this is the indeterminate form co/o0) we find
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d. Since we have an indeterminate form of 0/0 we can apply ’'Hopital’s Rule. We find
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To proceed we multiply by 1, finding that
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e. Noting that
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cot(z) = Z?jé;ﬂ)) and  csc(z) = sinl(x)
we find that
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2. To have a continuous function we must have

lim f(z) = f(0) = c.
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Considering this limit (which is in the indeterminate form 0/0) we find
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This is still in the indeterminate form 0/0, so we apply 'Hopital’s Rule again. We find
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Thus, we choose ¢ = 2.7 in order to make the function continuous.



3. a. Noting that f'(z) = ¢'(x) = 1 we see that
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Also, evaluating the limit
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b. This does not contradict 'Hopital’s Rule because the functions f and g in the limit as
x — 0 do not meet the hypotheses of 'Hopital’s Rule (they are not in an indeterminate

form).



