1. a. First note that the limit is of the indeterminate form $0 / 0$, so we can apply l'Hôpital's Rule. We find that

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x} .
$$

Once again we need to apply l'Hôpital's Rule. We find

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{2}=\frac{1}{2} .
$$

b. This limit is not in an indeterminate form, so we cannot apply l'Hôpital's Rule. Since x is increasing to 7 , the denominator is negative, so we find that

$$
\lim _{x / 7} \frac{4}{x-7}=-\infty
$$

c. Since the order of the polynomial in the denominator is larger than that in the numerator, the limit is 0 . Using l'Hôpital's Rule (noting this is the indeterminate form ∞ / ∞) we find

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{x^{3}+x+1}=\lim _{x \rightarrow \infty} \frac{4 x+3}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{4}{6 x}=0 .
$$

d. Since we have an indeterminate form of $0 / 0$ we can apply l'Hôpital's Rule. We find

$$
\lim _{x \searrow 0} \frac{2 x}{x+7 \sqrt{x}}=\lim _{x \searrow 0} \frac{2}{1+7 /(2 \sqrt{x})} .
$$

To proceed we multiply by 1 , finding that

$$
\lim _{x \searrow 0} \frac{2}{1+7 /(2 \sqrt{x})}=\lim _{x \searrow 0} \frac{2}{1+7 /(2 \sqrt{x})} \cdot \frac{\sqrt{x}}{\sqrt{x}}=\lim _{x \searrow 0} \frac{2 \sqrt{x}}{\sqrt{x}+7 / 2}=0 .
$$

e. Noting that

$$
\cot (x)=\frac{\cos (x)}{\sin (x)} \quad \text { and } \quad \csc (x)=\frac{1}{\sin (x)}
$$

we find that

$$
\frac{\cot (x)}{\csc (x)}=\frac{\cos (x) / \sin (x)}{1 / \sin (x)}=\cos (x) .
$$

It follows that

$$
\lim _{x \searrow 0} \frac{\cot (x)}{\csc (x)}=\lim _{x \searrow 0} \cos (x)=1 .
$$

2. To have a continuous function we must have

$$
\lim _{x \rightarrow 0} f(x)=f(0)=c .
$$

Considering this limit (which is in the indeterminate form $0 / 0$) we find

$$
\lim _{x \rightarrow 0} \frac{9 x-3 \sin (3 x)}{5 x^{3}}=\lim _{x \rightarrow 0} \frac{9-9 \cos (3 x)}{15 x^{2}} .
$$

This is still in the indeterminate form $0 / 0$, so we apply l'Hôpital's Rule again. We find

$$
\lim _{x \rightarrow 0} \frac{9-9 \cos (3 x)}{15 x^{2}}=\lim _{x \rightarrow 0} \frac{27 \sin (3 x)}{30 x}=\lim _{x \rightarrow 0} \frac{81 \cos (3 x)}{30}=\frac{81}{30}=2.7 .
$$

Thus, we choose $c=2.7$ in order to make the function continuous.
3. a. Noting that $f^{\prime}(x)=g^{\prime}(x)=1$ we see that

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{1}{1}=1
$$

Also, evaluating the limit

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{x+2}{x+1}=\frac{2}{1}=2 .
$$

b. This does not contradict l'Hôpital's Rule because the functions f and g in the limit as $x \rightarrow 0$ do not meet the hypotheses of l'Hôpital's Rule (they are not in an indeterminate form).

