1. Newton's method fails because we have a horizontal tangent line which does not intersect the x-axis. Thus, there is no next approximation to the root.
2. Our goal is to find when $f(x)=x^{4}-2 x^{3}-x^{2}+2=0$. We have

$$
f^{\prime}(x)=4 x^{3}-6 x-2 x .
$$

It follows that for an approximation x_{n} we have

$$
x_{n+1}=x_{n}-\frac{x_{n}^{4}-2 x_{n}^{3}-x_{n}^{2}+2}{4 x_{n}^{3}-6 x_{n}-2 x_{n}} .
$$

If we start with $x_{0}=0.5$ we find $x_{4}=0.630115396$, and starting from $x_{0}=2.5$ we find $x_{4}=2.57327196$.
3. Here we want to find solutions to $f(x)=\tan (x)-2 x=0$. We find

$$
f^{\prime}(x)=\sec ^{2}(x)-2 .
$$

It follows that for an approximation x_{n} we have

$$
x_{n+1}=x_{n}-\frac{\tan (x)-2 x}{\sec ^{2}(x)-2} .
$$

We should choose a starting approximation between $[0, \pi / 2]$, say $x_{0}=1$. This yields $x_{1}=$ 1.31048, and eventually

$$
x \approx 1.16556 .
$$

4. Recall that $3^{1 / 7}$ is defined as the number x such that

$$
x^{7}=3 .
$$

Thus, we want to find a solution to the equation

$$
f(x)=x^{7}-3=0 .
$$

We find that

$$
f^{\prime}(x)=7 x^{6}
$$

so we have

$$
x_{n+1}=x_{n}-\frac{x^{7}-3}{7 x^{6}} .
$$

Noting that $1^{7}=1$ and $2^{7}=128$, we can make an educated starting guess near $x=1$, say $x_{0}=1.2$. Doing so we find that $x_{1}=1.1721$, and eventually

$$
3^{1 / 7}=x \approx 1.1699308
$$

We can be confident that our approximation is accurate up to 4 decimal places of accuracy by looking at how the approximations change over time as we move from x_{n} to x_{n+1}. After the first 4 decimal places stop changing for awhile we can be confident that our approximation is accurate at least up to 4 decimal places.
5. a. Since the submarine moves along the parabola $y=x^{2}$, the distance between the buoy and the submarine along its trajectory at some point (x, y) is given by

$$
D(x)=\sqrt{(x-2)^{2}+(y-(-1 / 2))^{2}}=\sqrt{\left.(x-2)^{2}+(y+1 / 2)\right)^{2}} .
$$

Noting that $y=x^{2}$ we have

$$
D(x)=\sqrt{(x-2)^{2}+\left(x^{2}+1 / 2\right)^{2}} .
$$

Noting that both quantities under the radical are positive, minimizing this quantity is the same as minimizing

$$
f(x)=(x-2)^{2}+\left(x^{2}+1 / 2\right)^{2} .
$$

To minimize this distance we look at the first derivative,

$$
f^{\prime}(x)=2(x-2)+2\left(x^{2}+1 / 2\right) \cdot 2 x=2 x-4+4 x^{3}+2 x=4\left(x^{3}+x-1\right) .
$$

This has a critical point when

$$
x^{3}+x-1=0,
$$

or

$$
x=\frac{1}{x^{2}+1} .
$$

Noting that the second derivative

$$
f^{\prime \prime}(x)=4\left(3 x^{2}+1\right)>0
$$

we see that this is a minimum.
b. We want to solve for

$$
f^{\prime}(x)=4\left(x^{3}+x-1\right)=0 .
$$

Thus, we have

$$
x_{n+1}=x_{n}-\frac{4\left(x_{n}^{3}+x_{n}-1\right)}{4\left(3 x_{n}^{2}+1\right)} .
$$

Starting with an initial approximation of $x_{0}=1$ we find

$$
x \approx 0.682327
$$

