
Real Analysis, Abbott

a.cyclohexane.molecule

1 A preliminary proof

Theorem 1 (Equality of real numbers.)
Two real numbers a and b are equal if and only if for every real number ε > 0 it follows that |a−b| < ε.

Proof. (⇒) Assume a = b. Then |a − b| = 0 < ε, as desired. (⇐) Assume |a − b| < ε for all ε > 0.
Now assume for contradiction that |a − b| = ε0. By assumption we must have |a − b| < ε0 also, a
contradiction. Hence |a− b| < ε for all ε > 0, and we are done.

2 Upper and lower bounds

Proposition 2 (Axiom of completeness.)
Every non-empty set of real numbers that is bounded above has a least upper bound.

Definition 3 (Upper bound, bounded above; lower bound, bounded below.)
A set A ⊆ R is bounded above (resp. bounded below) if there exists a number b ∈ R such that a ≤ b
(resp. a ≥ b) for all a ∈ A. The number b is called an upper bound (resp. a lower bound) for A.

Definition 4 (Least upper bound, supremum; greatest lower bound, infimum.)
A real number s is the least upper bound (resp. greatest lower bound) or supremum (resp. infimum)
of a set A if s is an upper bound (resp. lower bound) and s ≤ s′ (resp. s ≥ s′) for any s′ an upper
bound (resp. lower bound) of A. We denote s by s = supA (resp. s = inf A).

Definition 5 (Maximum, minimum.)
A real number s is the maximum (resp. minimum) of a set A if s ∈ A and s ≥ s′ (resp. s ≤ s′) for
all s′ ∈ A.

Theorem 6 (Maximum and supremum; minimum and infimum.)
If set A has a maximum (resp. minimum) s, then its supremum (resp. infimum) is also s.

Proof. By definition of maximum (resp. minimum), s is an upper bound (resp. a lower bound).
Because s ∈ A, s < s′ (resp. s > s′) for any s′ an upper bound (resp. a lower bound) of A. Hence
s = supA (resp. s = inf A). Note that a maximum (resp. minimum) need not always exist.
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2. UPPER AND LOWER BOUNDS

Theorem 7 (Alternative definition of supremum.)
A real number s that is an upper bound of the set A is also its supremum if and only if there exists
an a ∈ A such that s− ε < a for all ε > 0.

Proof. (⇒) Assume s = supA. Now assume for contradiction that s − ε ≥ a for all a ∈ A. Then
s− ε is an upper bound for A smaller than s = supA, a contradiction. (⇐) Assume that there exists
an a ∈ A such that s − ε < a for all ε > 0. Then there can be no upper bound smaller than s, and
therefore s = supA.

A similar statement and proof can be made for the infimum, but the parentheses are getting tiring.

Theorem 8 (“Axiom of completeness” for lower bounds.)
Let A be bounded below, and define B as the set of all lower bounds b of the set A. Then supB = inf A.

Proof. By the axiom of completeness, supB exists. Let b′ = supB and a′ = inf A. Since b′ is a lower
bound of A, a′ ≥ b′; since b′ is the greatest lower bound of A, b′ ≥ a′. Hence a′ = b′, and we are done.

This shows that we need not postulate that a greatest lower bound exists for sets bounded below.

Theorem 9 (Partial linearity of supremum.)
Given sets A and B, each bounded above, and a real constant c > 0,

1. sup(A+ c) = c+ supA,

2. sup(cA) = c supA,

3. sup(A+B) = supA+ supB.

Proof.

1. Let a′ = supA, and a′′ any upper bound of A. Then a′′ ≥ a′ ≥ a for all a ∈ A, and hence
a′′ + c ≥ a′ + c ≥ a+ c for all (a+ c) ∈ (c+A). Because a′′ + c is an arbitrary upper bound of
c+A, c+ a′ = sup(c+A).

2. Let a′ = supA, and a′′ any upper bound of A. Then a′′ ≥ a′ ≥ a for all a ∈ A, and hence
ca′′ ≥ ca′ ≥ ca for all ca ∈ cA. Because ca′′ is an arbitrary upper bound of cA, ca′ = sup(cA).

3. Let a′ = supA, b′ = supB, and a′′, b′′ any upper bound of A and B respectively. Then
a′′ ≥ a′ ≥ a for all a ∈ A and b′′ ≥ b′ ≥ b for all b ∈ B, and hence a′′+ b′′ ≥ a′+ b′ ≥ a+ b for all
(a+ b) ∈ (A+B). Because a′′+ b′′ is an arbitrary upper bound of A+B, a′+ b′ = sup(A+B).

What happens if c < 0?

Some alternative proofs

Theorem 10 (Theorem 2.3.4.i)
If an ≥ 0 for all n ∈ N, then a ≥ 0.

Proof. We will prove the contrapositive of the above statement: if a < 0, then there exists an < 0 for
some n ∈ N. Let a = −ε0. Then, for all ε > 0, for some n ≥ N , |an + ε0| = |an − a| < ε. Set ε = ε0,
so that

|an + ε0| < ε0 ⇐⇒ −ε0 < an + ε0 < ε0 ⇐⇒ −2ε0 < an < 0,

as desired.

2



2. UPPER AND LOWER BOUNDS

Theorem 11 (Exercise 2.5.6)
Let (an) be a bounded sequence, and define the set

S = {x ∈ R : x < an for infinitely many terms an}.

Show that there exists a subsequence (ank
) converging to s = supS. (This is a direct proof of the

Bolzano-Weierstrass Theorem using the Axiom of Completeness.)

Proof. Consider the subsequence (ank
) defined by

ank
is the kth term in (an) such that ank

≥ supS.

Assume for contradiction that this sequence does not converge to supS. Then

there exists ε0 > 0 such that for all K, there exists k > K such that ank
− supS > ε0.

There is an infinite number of such k, for one can always take K = 1 + max{kn}, where {kn} is any
finite subset of k’s. But then x = supS+ ε0 ∈ S, which contradicts x ≤ supS. Hence (ank

) converges
to supS.

Theorem 12 (Theorem 3.3.4)
A set K ⊆ R is compact if and only if it is closed and bounded.

Proof. (⇒) Let a compact set K be arbitrary. By definition, every sequence in K has a subsequence
that converges to a limit in K. Consider first all convergent sequences in K. All subsequences of
these convergent sequences must converge to the same limit, which is in K by definition. Therefore
all convergent sequences in K have their limit in K, and hence K contains all its limit points and
is closed. Further, by contraposition, K must be bounded. Let K ′ be an unbounded set. Then it
contains a monotone unbounded sequence, each of whose subsequences is unbounded. Hence K ′ is
not compact, so K must be bounded. (⇐) Let a closed and bounded set L be arbitrary. Then by the
Bolzano-Weierstrass theorem every sequence in L possesses a convergent subsequence whose limit is
in L because L is closed. Hence L is compact.

Theorem 13 (Theorem 3.4.7)
A set E ⊆ R is connected if and only if c ∈ E for all c such that a < c < b, where a, b ∈ E.

Proof. [Not new, just restated in one direction.] (⇒) Let E be connected, and considerA = (−∞, c)∩E
and B = (c,∞)∩E. Then A and B are nonempty and separated. If c /∈ E, then E = A∪B, but this
implies that E is disconnected, a contradiction. Hence c ∈ E.
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2. UPPER AND LOWER BOUNDS

Theorem 14 (Unstated theorem?)
Any open subset of R is a finite or countable union of disjoint open intervals.

Proof. A finite union is a countable union, so we need only prove countability. We know that Q is
countable and dense in R, so our goal is to construct a set of disjoint open intervals based on the
elements of Q. Such a set is countable by construction.

Let A ⊆ R be open and arbitrary. Every element a ∈ A is either rational or irrational. If a is rational,
then define the interval

Ia =
⋃

I an open interval
a∈ I ⊆A

I.

If a is irrational, then it exists within an ε-neighborhood of a rational number a′, and there must exist
such an ε-neighborhood in A because A is open. Then a ∈ Ia′ . Since all elements a ∈ A are in an
interval Iq for all q ∈ A ∩Q, then

A ⊆
⋃

q∈A∩Q
Iq and, by construction,

⋃
q ∈A∩Q

Iq ⊆ A, so that A =
⋃

q∈A∩Q
Iq.

It remains to show that the intervals Iq are disjoint, or equivalently that if x ∈ Ic ∩ Id, then Ic = Id.
Since x ∈ Ic and x ∈ Id, by construction Ic ⊆ Id and Id ⊆ Ic, so Ic = Id.

Theorem 15 (Theorem 4.2.3)
limx→c f(x) = L if and only if, for all sequences (xn) ⊆ A such that xn 6= c and (xn)→ c, f(xn)→ L.

Proof. The former clause is equivalent to the statement that

for all ε > 0, there exists δ > 0 with 0 < |x− c| < δ such that |f(x)− L| < ε,

and the latter to the statement that

for all ε > 0, there exists N such that |f(xn)− L| < ε for all n ≥ N .

(⇒) Assume that limx→c f(x) = L and that (xn) → c, xn 6= c. We need to find an N such that the
conditions of the second clause are fulfilled. Let ε be arbitrary. Then there exists a corresponding δ
such that 0 < |x − c| < δ. Choose N to be the minimum n for which |xn − c| < δ for all n ≥ N .
Such an N must exist, since (xn)→ c, and by hypothesis |f(xn)−L| < ε for all n ≥ N . (⇐) Assume
the second clause. We need to find a δ such that the conditions of the first clause are fulfilled. Let
ε be arbitrary, and choose δ > xN − c, where N is as stated in the second clause; by hypothesis, the
conditions of the first clause are fulfilled.

Theorem 16 (Exercise 4.3.7)
Assume h : R→ R is continuous, and let K = {x : h(x) = 0}. Then K is a closed set.

Proof. If no such x exists, then K is the null set, which is closed. We will thus assume that K is non-
empty and show that Kc is open. Let x /∈ K be arbitrary. Then by continuity of h any ε-neighborhood
about h(x) with 0 < ε < |h(x)| possesses a δ-neighborhood about x such that Vδ(x) ⊆ Kc, which
defines an open set.
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2. UPPER AND LOWER BOUNDS

Theorem 17 (Exercise 4.3.8)
A function continuous on R and equal to 0 at every rational point must be identically 0 on R.

Proof. Because Q is dense in R, any irrational number is arbitrarily close to a rational number, and
by continuity must therefore take on the same value. Because R is the union of Q and I, the function
must be identically 0 on R.
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