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1 A preliminary proof

Theorem 1 (Equality of real numbers.)
Two real numbers a and b are equal if and only if for every real number e > 0 it follows that |[a—b| < e.

Proof. (=) Assume a = b. Then |a —b| = 0 < ¢, as desired. (<) Assume |a — b| < € for all € > 0.
Now assume for contradiction that |a — b| = €p. By assumption we must have |a — b < ¢ also, a
contradiction. Hence |a — b| < € for all € > 0, and we are done.

2 Upper and lower bounds

Proposition 2 (Axiom of completeness.)
Every non-empty set of real numbers that is bounded above has a least upper bound.

Definition 3 (Upper bound, bounded above; lower bound, bounded below.)
A set A C R is bounded above (resp. bounded below) if there exists a number b € R such that a < b
(resp. a > b) for all a € A. The number b is called an upper bound (resp. a lower bound) for A.

Definition 4 (Least upper bound, supremum; greatest lower bound, infimum.)

A real number s is the least upper bound (vesp. greatest lower bound) or supremum (resp. infimum)
of a set A if s is an upper bound (resp. lower bound) and s < s’ (resp. s > s’) for any s’ an upper
bound (resp. lower bound) of A. We denote s by s = sup A (resp. s = inf A).

Definition 5 (Maximum, minimum.)
A real number s is the mazimum (resp. minimum) of a set A if s € A and s > s’ (resp. s < §') for
all s € A.

Theorem 6 (Maximum and supremum; minimum and infimum.)
If set A has a maximum (resp. minimum) s, then its supremum (resp. infimum) is also s.

Proof. By definition of maximum (resp. minimum), s is an upper bound (resp. a lower bound).
Because s € A, s < s’ (resp. s > §') for any s’ an upper bound (resp. a lower bound) of A. Hence
s =sup A (resp. s = inf A). Note that a maximum (resp. minimum) need not always exist.




2. UPPER AND LOWER BOUNDS

Theorem 7 (Alternative definition of supremum.)
A real number s that is an upper bound of the set A is also its supremum if and only if there exists
an a € A such that s — e < a for all € > 0.

Proof. (=) Assume s = sup A. Now assume for contradiction that s — e > a for all a € A. Then
s — e is an upper bound for A smaller than s = sup A4, a contradiction. (<) Assume that there exists
an a € A such that s — e < a for all € > 0. Then there can be no upper bound smaller than s, and
therefore s = sup A.

A similar statement and proof can be made for the infimum, but the parentheses are getting tiring.

Theorem 8 (“Axiom of completeness” for lower bounds.)
Let A be bounded below, and define B as the set of all lower bounds b of the set A. Then sup B = inf A.

Proof. By the axiom of completeness, sup B exists. Let b’ = sup B and o/ = inf A. Since b’ is a lower
bound of A, a’ > ¥/; since b’ is the greatest lower bound of A, &’ > a’. Hence a’ = b, and we are done.

This shows that we need not postulate that a greatest lower bound exists for sets bounded below.

Theorem 9 (Partial linearity of supremum.)

Given sets A and B, each bounded above, and a real constant ¢ > 0,
1. sup(A+c¢) =c+sup A,
2. sup(cA) = csup A,
3. sup(A + B) = sup A + sup B.

Proof.

1. Let ' = sup A, and a” any upper bound of A. Then a” > a’ > a for all a € A, and hence
a'+c>d +c>a+cforall (a+c) € (c+ A). Because a’ + ¢ is an arbitrary upper bound of
c+ A, c+ad =sup(c+ A).

2. Let o’ = sup A, and a” any upper bound of A. Then a” > a’ > a for all a € A, and hence
ca'’ > ca’ > ca for all ca € cA. Because ca” is an arbitrary upper bound of cA, ca’ = sup(cA).

3. Let o/ = supA, b = supB, and a”, b’ any upper bound of A and B respectively. Then
a’">a >aforalla € Aand b’ >V > bforall b€ B, and hence a”’ +b" > a’ +b" > a -+ for all
(a+0b) € (A+ B). Because o’ +b" is an arbitrary upper bound of A+ B, a’ +b' = sup(A + B).

What happens if ¢ < 07

Some alternative proofs

Theorem 10 (Theorem 2.3.4.i)
If a,, > 0 for all n € N, then a > 0.

Proof. We will prove the contrapositive of the above statement: if a < 0, then there exists a,, < 0 for
some n € N. Let a = —¢p. Then, for all € > 0, for some n > N, |a, + €| = |a, — a| < e. Set € = €,
so that

lan, +e0l <€y <= —e<apte<e <= —2¢<a,<0,

as desired.
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Theorem 11 (Exercise 2.5.6)
Let (a,,) be a bounded sequence, and define the set

S={z €R:z < a, for infinitely many terms a,, }.

Show that there exists a subsequence (a,,) converging to s = sup S. (This is a direct proof of the
Bolzano-Weierstrass Theorem using the Axiom of Completeness.)

Proof. Consider the subsequence (ay, ) defined by
G, is the k™ term in (an) such that a,, > supS.
Assume for contradiction that this sequence does not converge to sup.S. Then
there exists ¢y > 0 such that for all K, there exists k > K such that a,, —sup S > .

There is an infinite number of such &, for one can always take K = 1 + max{k, }, where {k,} is any
finite subset of k’s. But then z = sup S+ ¢y € S, which contradicts < sup S. Hence (a, ) converges
to sup S.

Theorem 12 (Theorem 3.3.4)
A set K C R is compact if and only if it is closed and bounded.

Proof. (=) Let a compact set K be arbitrary. By definition, every sequence in K has a subsequence
that converges to a limit in K. Consider first all convergent sequences in K. All subsequences of
these convergent sequences must converge to the same limit, which is in K by definition. Therefore
all convergent sequences in K have their limit in K, and hence K contains all its limit points and
is closed. Further, by contraposition, K must be bounded. Let K’ be an unbounded set. Then it
contains a monotone unbounded sequence, each of whose subsequences is unbounded. Hence K’ is
not compact, so K must be bounded. (<) Let a closed and bounded set L be arbitrary. Then by the
Bolzano-Weierstrass theorem every sequence in L possesses a convergent subsequence whose limit is
in L because L is closed. Hence L is compact.

Theorem 13 (Theorem 3.4.7)
A set F C R is connected if and only if ¢ € F for all ¢ such that a < ¢ < b, where a,b € E.

Proof. [Not new, just restated in one direction.] (=) Let E be connected, and consider A = (—oo, ¢)NE
and B = (¢,00) N E. Then A and B are nonempty and separated. If ¢ ¢ E, then E = AU B, but this
implies that F is disconnected, a contradiction. Hence ¢ € F.
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Theorem 14 (Unstated theorem?)
Any open subset of R is a finite or countable union of disjoint open intervals.

Proof. A finite union is a countable union, so we need only prove countability. We know that @ is
countable and dense in R, so our goal is to construct a set of disjoint open intervals based on the
elements of Q. Such a set is countable by construction.

Let A C R be open and arbitrary. Every element a € A is either rational or irrational. If a is rational,
then define the interval
I, = U I.

I an open interval
aclICA

If @ is irrational, then it exists within an e-neighborhood of a rational number a/, and there must exist
such an e-neighborhood in A because A is open. Then a € I,,. Since all elements a € A are in an
interval I, for all ¢ € AN @, then

AC U I, and, by construction, U I, C A, sothat A= U Hge
geEANQ geEANQ geANQ

It remains to show that the intervals /, are disjoint, or equivalently that if x € I. N Iy, then I. = I;.
Since z € I, and = € Iy, by construction I. C Iy and I; C I, so I. = I;.

Theorem 15 (Theorem 4.2.3)
lim,_,. f(x) = L if and only if, for all sequences (z,) C A such that x,, # ¢ and (z,) — ¢, f(z,) — L.

Proof. The former clause is equivalent to the statement that
for all € > 0, there exists 6 > 0 with 0 < |z — ¢| < § such that |f(z) — L| < e,
and the latter to the statement that
for all € > 0, there exists N such that |f(z,) — L| < € for all n > N.

(=) Assume that lim,_,. f(z) = L and that (z,,) — ¢, ©,, # ¢. We need to find an N such that the
conditions of the second clause are fulfilled. Let € be arbitrary. Then there exists a corresponding §
such that 0 < |z — ¢| < §. Choose N to be the minimum n for which |z, —¢| < 0 for all n > N.
Such an N must exist, since (z,,) — ¢, and by hypothesis |f(z,) — L| < € for all n > N. (<) Assume
the second clause. We need to find a § such that the conditions of the first clause are fulfilled. Let
€ be arbitrary, and choose § > & — ¢, where N is as stated in the second clause; by hypothesis, the
conditions of the first clause are fulfilled.

Theorem 16 (Exercise 4.3.7)
Assume h: R — R is continuous, and let K = {z : h(x) = 0}. Then K is a closed set.

Proof. If no such z exists, then K is the null set, which is closed. We will thus assume that K is non-
empty and show that K¢ is open. Let « ¢ K be arbitrary. Then by continuity of h any e-neighborhood
about h(z) with 0 < e < |h(z)| possesses a d-neighborhood about z such that Vs(z) C K¢, which
defines an open set.
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Theorem 17 (Exercise 4.3.8)
A function continuous on R and equal to 0 at every rational point must be identically 0 on R.

Proof. Because @ is dense in R, any irrational number is arbitrarily close to a rational number, and
by continuity must therefore take on the same value. Because IR is the union of @ and I, the function
must be identically 0 on R.




