Real Analysis, Abbott

a.cyclohexane.molecule

1 A preliminary proof

Theorem 1 (Equality of real numbers.) Two real numbers *a* and *b* are equal if and only if for every real number $\epsilon > 0$ it follows that $|a-b| < \epsilon$.

Proof. (\Rightarrow) Assume a = b. Then $|a - b| = 0 < \epsilon$, as desired. (\Leftarrow) Assume $|a - b| < \epsilon$ for all $\epsilon > 0$. Now assume for contradiction that $|a - b| = \epsilon_0$. By assumption we must have $|a - b| < \epsilon_0$ also, a contradiction. Hence $|a - b| < \epsilon$ for all $\epsilon > 0$, and we are done.

2 Upper and lower bounds

Proposition 2 (Axiom of completeness.) Every non-empty set of real numbers that is bounded above has a least upper bound.

Definition 3 (Upper bound, bounded above; lower bound, bounded below.) A set $A \subseteq \mathbb{R}$ is *bounded above* (resp. *bounded below*) if there exists a number $b \in \mathbb{R}$ such that $a \leq b$ (resp. $a \geq b$) for all $a \in A$. The number b is called an *upper bound* (resp. a *lower bound*) for A.

Definition 4 (Least upper bound, supremum; greatest lower bound, infimum.) A real number s is the *least upper bound* (resp. greatest lower bound) or supremum (resp. infimum) of a set A if s is an upper bound (resp. lower bound) and $s \le s'$ (resp. $s \ge s'$) for any s' an upper bound (resp. lower bound) of A. We denote s by $s = \sup A$ (resp. $s = \inf A$).

Definition 5 (Maximum, minimum.) A real number s is the maximum (resp. minimum) of a set A if $s \in A$ and $s \ge s'$ (resp. $s \le s'$) for all $s' \in A$.

Theorem 6 (Maximum and supremum; minimum and infimum.) If set A has a maximum (resp. minimum) s, then its supremum (resp. infimum) is also s.

Proof. By definition of maximum (resp. minimum), s is an upper bound (resp. a lower bound). Because $s \in A$, s < s' (resp. s > s') for any s' an upper bound (resp. a lower bound) of A. Hence $s = \sup A$ (resp. $s = \inf A$). Note that a maximum (resp. minimum) need not always exist. **Theorem 7** (Alternative definition of supremum.) A real number s that is an upper bound of the set A is also its supremum if and only if there exists an $a \in A$ such that $s - \epsilon < a$ for all $\epsilon > 0$.

Proof. (\Rightarrow) Assume $s = \sup A$. Now assume for contradiction that $s - \epsilon \ge a$ for all $a \in A$. Then $s - \epsilon$ is an upper bound for A smaller than $s = \sup A$, a contradiction. (\Leftarrow) Assume that there exists an $a \in A$ such that $s - \epsilon < a$ for all $\epsilon > 0$. Then there can be no upper bound smaller than s, and therefore $s = \sup A$.

A similar statement and proof can be made for the infimum, but the parentheses are getting tiring.

Theorem 8 ("Axiom of completeness" for lower bounds.) Let A be bounded below, and define B as the set of all lower bounds b of the set A. Then $\sup B = \inf A$.

Proof. By the axiom of completeness, sup B exists. Let $b' = \sup B$ and $a' = \inf A$. Since b' is a lower bound of A, $a' \ge b'$; since b' is the greatest lower bound of A, $b' \ge a'$. Hence a' = b', and we are done.

This shows that we need not postulate that a greatest lower bound exists for sets bounded below.

Theorem 9 (Partial linearity of supremum.) Given sets A and B, each bounded above, and a real constant c > 0,

1. $\sup(A+c) = c + \sup A$,

 $2. \ \sup(cA) = c \sup A,$

3. $\sup(A+B) = \sup A + \sup B$.

Proof.

- 1. Let $a' = \sup A$, and a'' any upper bound of A. Then $a'' \ge a' \ge a$ for all $a \in A$, and hence $a'' + c \ge a' + c \ge a + c$ for all $(a + c) \in (c + A)$. Because a'' + c is an arbitrary upper bound of c + A, $c + a' = \sup(c + A)$.
- 2. Let $a' = \sup A$, and a'' any upper bound of A. Then $a'' \ge a' \ge a$ for all $a \in A$, and hence $ca'' \ge ca' \ge ca$ for all $ca \in cA$. Because ca'' is an arbitrary upper bound of cA, $ca' = \sup(cA)$.
- 3. Let $a' = \sup A$, $b' = \sup B$, and a'', b'' any upper bound of A and B respectively. Then $a'' \ge a' \ge a$ for all $a \in A$ and $b'' \ge b' \ge b$ for all $b \in B$, and hence $a'' + b'' \ge a' + b' \ge a + b$ for all $(a+b) \in (A+B)$. Because a'' + b'' is an arbitrary upper bound of A + B, $a' + b' = \sup(A + B)$.

What happens if c < 0?

Some alternative proofs

Theorem 10 (Theorem 2.3.4.i) If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.

Proof. We will prove the contrapositive of the above statement: if a < 0, then there exists $a_n < 0$ for some $n \in \mathbb{N}$. Let $a = -\epsilon_0$. Then, for all $\epsilon > 0$, for some $n \ge N$, $|a_n + \epsilon_0| = |a_n - a| < \epsilon$. Set $\epsilon = \epsilon_0$, so that

 $|a_n + \epsilon_0| < \epsilon_0 \quad \Longleftrightarrow \quad -\epsilon_0 < a_n + \epsilon_0 < \epsilon_0 \quad \Longleftrightarrow \quad -2\epsilon_0 < a_n < 0,$

as desired.

Theorem 11 (Exercise 2.5.6) Let (a_n) be a bounded sequence, and define the set

 $S = \{ x \in \mathbb{R} : x < a_n \text{ for infinitely many terms } a_n \}.$

Show that there exists a subsequence (a_{n_k}) converging to $s = \sup S$. (This is a direct proof of the Bolzano-Weierstrass Theorem using the Axiom of Completeness.)

Proof. Consider the subsequence (a_{n_k}) defined by

 a_{n_k} is the k^{th} term in (a_n) such that $a_{n_k} \ge \sup S$.

Assume for contradiction that this sequence does not converge to $\sup S$. Then

there exists $\epsilon_0 > 0$ such that for all K, there exists k > K such that $a_{n_k} - \sup S > \epsilon_0$.

There is an infinite number of such k, for one can always take $K = 1 + \max\{k_n\}$, where $\{k_n\}$ is any finite subset of k's. But then $x = \sup S + \epsilon_0 \in S$, which contradicts $x \leq \sup S$. Hence (a_{n_k}) converges to $\sup S$.

Theorem 12 (Theorem 3.3.4)

A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof. (\Rightarrow) Let a compact set K be arbitrary. By definition, every sequence in K has a subsequence that converges to a limit in K. Consider first all convergent sequences in K. All subsequences of these convergent sequences must converge to the same limit, which is in K by definition. Therefore all convergent sequences in K have their limit in K, and hence K contains all its limit points and is closed. Further, by contraposition, K must be bounded. Let K' be an unbounded set. Then it contains a monotone unbounded sequence, each of whose subsequences is unbounded. Hence K' is not compact, so K must be bounded. (\Leftarrow) Let a closed and bounded set L be arbitrary. Then by the Bolzano-Weierstrass theorem every sequence in L possesses a convergent subsequence whose limit is in L because L is closed. Hence L is compact.

Theorem 13 (Theorem 3.4.7) A set $E \subseteq \mathbb{R}$ is connected if and only if $c \in E$ for all c such that a < c < b, where $a, b \in E$.

Proof. [Not new, just restated in one direction.] (\Rightarrow) Let E be connected, and consider $A = (-\infty, c) \cap E$ and $B = (c, \infty) \cap E$. Then A and B are nonempty and separated. If $c \notin E$, then $E = A \cup B$, but this implies that E is disconnected, a contradiction. Hence $c \in E$. Theorem 14 (Unstated theorem?)

Any open subset of \mathbb{R} is a finite or countable union of disjoint open intervals.

Proof. A finite union is a countable union, so we need only prove countability. We know that \mathbb{Q} is countable and dense in \mathbb{R} , so our goal is to construct a set of disjoint open intervals based on the elements of \mathbb{Q} . Such a set is countable by construction.

Let $A \subseteq \mathbb{R}$ be open and arbitrary. Every element $a \in A$ is either rational or irrational. If a is rational, then define the interval

$$I_a = \bigcup_{\substack{I \text{ an open interval} \\ a \in I \subseteq A}} I.$$

If a is irrational, then it exists within an ϵ -neighborhood of a rational number a', and there must exist such an ϵ -neighborhood in A because A is open. Then $a \in I_{a'}$. Since all elements $a \in A$ are in an interval I_q for all $q \in A \cap \mathbb{Q}$, then

$$A \subseteq \bigcup_{q \in A \cap \mathbb{Q}} I_q \quad \text{and, by construction,} \quad \bigcup_{q \in A \cap \mathbb{Q}} I_q \subseteq A, \quad \text{so that} \quad A = \bigcup_{q \in A \cap \mathbb{Q}} I_q.$$

It remains to show that the intervals I_q are disjoint, or equivalently that if $x \in I_c \cap I_d$, then $I_c = I_d$. Since $x \in I_c$ and $x \in I_d$, by construction $I_c \subseteq I_d$ and $I_d \subseteq I_c$, so $I_c = I_d$.

Theorem 15 (Theorem 4.2.3)

 $\lim_{x\to c} f(x) = L$ if and only if, for all sequences $(x_n) \subseteq A$ such that $x_n \neq c$ and $(x_n) \to c$, $f(x_n) \to L$.

Proof. The former clause is equivalent to the statement that

for all $\epsilon > 0$, there exists $\delta > 0$ with $0 < |x - c| < \delta$ such that $|f(x) - L| < \epsilon$,

and the latter to the statement that

for all $\epsilon > 0$, there exists N such that $|f(x_n) - L| < \epsilon$ for all $n \ge N$.

 (\Rightarrow) Assume that $\lim_{x\to c} f(x) = L$ and that $(x_n) \to c, x_n \neq c$. We need to find an N such that the conditions of the second clause are fulfilled. Let ϵ be arbitrary. Then there exists a corresponding δ such that $0 < |x - c| < \delta$. Choose N to be the minimum n for which $|x_n - c| < \delta$ for all $n \geq N$. Such an N must exist, since $(x_n) \to c$, and by hypothesis $|f(x_n) - L| < \epsilon$ for all $n \geq N$. (\Leftarrow) Assume the second clause. We need to find a δ such that the conditions of the first clause are fulfilled. Let ϵ be arbitrary, and choose $\delta > x_N - c$, where N is as stated in the second clause; by hypothesis, the conditions of the first clause are fulfilled.

Theorem 16 (Exercise 4.3.7)

Assume $h : \mathbb{R} \to \mathbb{R}$ is continuous, and let $K = \{x : h(x) = 0\}$. Then K is a closed set.

Proof. If no such x exists, then K is the null set, which is closed. We will thus assume that K is nonempty and show that K^c is open. Let $x \notin K$ be arbitrary. Then by continuity of h any ϵ -neighborhood about h(x) with $0 < \epsilon < |h(x)|$ possesses a δ -neighborhood about x such that $V_{\delta}(x) \subseteq K^c$, which defines an open set.

Theorem 17 (Exercise 4.3.8)

A function continuous on \mathbb{R} and equal to 0 at every rational point must be identically 0 on \mathbb{R} .

Proof. Because \mathbb{Q} is dense in \mathbb{R} , any irrational number is arbitrarily close to a rational number, and by continuity must therefore take on the same value. Because \mathbb{R} is the union of \mathbb{Q} and \mathbb{I} , the function must be identically 0 on \mathbb{R} .