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Electric Fields in Matter (Griffiths Ch. 4)

Matter is broadly categorized into conductors and insulators (dielectrics). Insulators are
polarized in an electric field: neutral atoms deform into dipoles, experiencing a force
(p · ∇)E, a torque p×E and having energy −p ·E. Define the polarization P as the
dipole moment per unit volume; the potential caused by the polarized object is equivalent
to that of an (otherwise neutral) object with surface charge σb = P · n̂ and volume charge
ρb = −∇ ·P. Equivalently, we may consider a polarized object as the superposition of
two oppositely charged objects, slightly displaced with respect to one another.

It is convenient to define the electric displacement D = ε0E + P, an analogue to the
electric field E, when discussing electric fields in matter, since Gauss’s law applied to D
reads ∇ ·D = ρf , and all our tricks with Gaussian surfaces carry over. On the other hand,
D is not a perfect analogue to E: a vector field is determined by its divergence and curl,
and while we have ∇ ·E = ρ/ε0, ∇×E = 0, and ∇ ·D = ρf , it is not necessarily true
that ∇×D = 0. When the latter is true, then the analogy can indeed simplify problems.
[In general, we find that ∇×D = ∇×P = 0 fails at boundaries unless P is orthogonal
to the surface, for in that case P · dl = 0.]

We may also rewrite our boundary conditions for E in terms of D, which may be more
convenient to apply:

E⊥
above − E⊥

below =
σ

ε0
⇐⇒ D⊥

above −D⊥
below = σf

E
‖
above −E

‖
below = 0 ⇐⇒ D

‖
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‖
below = P

‖
above −P

‖
below

Especially important are linear dielectrics, those for which the polarization may be written
P = ε0χeE, and the electric displacement D = ε0(1 +χe)E =: εE. We call χe the electric
susceptibility, ε the permittivity of the material, and εr = 1+χe the relative permittivity or
dielectric constant of the material. In the case where ∇×D = 0, comparing ∇ ·E = ρ/ε0
and ∇ ·D = ρf yields simply D = ε0Evac and hence E = D/ε = Evac/εr.

In a homogeneous linear dielectric, the bound charge density ρb is proportional to the free
charge density ρf :

ρb = −∇ ·P = −∇ ·
(
ε0
χe

e
D
)

= −
(

χe

1 + χe

)
ρf ,

and, in particular, unless free charge is embedded in the material, ρf = ρb = 0, and any
net charge must reside at the surface. In this case, the potential within the dielectric
satisfies Laplace’s equation, and we can generalize electrostatic boundary value problems
to include linear dielectrics.

The linear-dielectric analogue of energy stored in an electric system is

U =
1

2
ε0

∫
E2 dτ → 1

2
ε

∫
E2 dτ =

1

2

∫
D ·E dτ.

Consider a situation in which a dielectric slab is partway within a capacitor. The force
pulling on the dielectric slab is given by

F = −dU

dx
=

d

dx

(
Q2

2C

)
=

1

2

Q2

C2

dC

dx
=

1

2
V 2 dC

dx
,
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where we use the fact that the energy stored in a capacitor is CV 2/2 = Q2/2C and
consider the scenario in which Q is held fixed as the force acts on the dielectric slab.
[Because the force acting on the slab is purely dictated by the charge configuration at any
point, it makes no difference how the charge configuration is changing—the scenario in
which Q is held fixed is simply easiest computationally.]

Magnetostatics (Griffiths Ch. 5)

The Lorentz force law, F = qv ×B, provides the equation of motion in electro- and
magnetostatics. It is convenient to rewrite the Lorentz force law in terms of currents via
the substitution qv→ Il, yielding

Fmag = I

∫
dl×B.

We also frequently encounter surface and volume currents; those suggest the substitutions
I dl → K da, I dl → J dτ , where K and J are the surface and volume current densities
respectively.

The magnetic field of a steady line current is given by the Biot-Savart law,

B(r) =
µ0

4π

∫
I× r̂′′

r′′2
dl′ =

µ0I

4π

∫
dl′ × r̂′′

r′′2
.

The Biot-Savart law yields the two Maxwell equations ∇ ·B = 0 and ∇×B = µ0J. The
latter is Ampere’s law; in integral form,∮

B · dl = µ0Ienc.

Symmetry arguments and the Biot-Savart law often permit us to identify the direction of
the magnetic field; Ampere’s law can often do the rest.

That ∇ ·B = 0 permits us to identify a vector potential A such that ∇×A = B. Since
the curl is unique up to an additive gradient of a scalar, we have the freedom to also set
∇ ·A = 0, the Coulomb gauge. Ampere’s law then becomes

∇×B = ∇× (∇×A) = ∇(∇ ·A)−∇2A = µ0J ⇐⇒ ∇2A = −µ0J.

This is Poisson’s equation; assuming J goes to 0 at infinity, we can read off the solution

A(r) =
µ0

4π

∫
J(r′)

r′′
dτ ′.

If the current configuration is infinite, then other means must be found; one such uses∮
A · dl =

∫
B · da = Φ

and exploits the analogy between the above equation and Ampere’s law. For example,
finding the magnetic potential of an infinite solenoid is analogous to finding the magnetic
field of a fat wire: knowing the direction of the magnetic field of the wire gives us the
direction of the magnetic potential of the solenoid, and the above equation does the
rest. Another alternative is to match the components of ∇×A = B, noting that in most
circumstances the magnetic potential is in the same direction as the current.
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The Maxwell equations provide also magnetostatic boundary conditions:∫
B · da = 0 ⇐⇒ B⊥

above = B⊥
below∮

B · dl = µ0Ienc ⇐⇒ B⊥
above −B⊥

below = µ0K.

Similarly, ∇ ·A = 0 and ∇×A = B yield Aabove = Abelow and

∂Aabove

∂n
− ∂Abelow

∂n
= −µ0K.

The magnetic dipole moment is the dominant term in the multipole expansion of the
vector potential (since the monopole term is identically zero) and is given by

Adip(r) =
µ0

4π

m× r̂

r2
, m = Ia.

Magnetic Fields in Matter (Griffiths Ch. 6)

Magnetic phenomena arise from charges in motion. Electrons orbiting nuclei and spinning
about their axes (in a classical picture) can be treated as magnetic dipoles, experiencing a
force ∇(m ·B), a torque m×B and having energy −m ·B in an applied magnetic field.
Paramagnetism, the attraction of objects to magnetic fields, arises from the net torque
on these microscopic dipoles in atoms and molecules with unpaired electrons. In atoms
and molecules with paired electrons, the torques on each electron-dipole generally cancel,
resulting in no net torque.

Although the formulae for electric and magnetic dipoles are similar, they are very different
in origin. Electric dipoles consist of paired positive and negative charges, whereas magnetic
dipoles do not—magnetic monopoles do not exist. Instead, magnetic dipoles are caused
by (microscopic) current loops. The differences between the two types of dipoles is most
evident close to the dipole itself: the direction of the electric field between the two charges
is opposite from that of the electric field outside, whereas the direction of the magnetic
field at the center of the current loop is the same as that of the magnetic field outside.

An applied magnetic field also retards the period of atomic orbits and creates a magnetic
dipole moment opposing the field, resulting in diamagnetism, the repulsion of objects from
magnetic fields. Diamagnetism is a universal phenomenon; however, being much weaker
than paramagnetism, diamagnetism is usually observable only in atoms and molecules
with paired electrons. Define the magnetization M as the magnetic dipole moment per
unit volume, analogous to the polarization P. The vector potential resulting from this
magnetization is equivalent to that of a surface current Kb = M× n̂ and that of a volume
current Jb = ∇×M.

It is convenient to define an auxiliary field H = B/µ0 −M, an analogue to the magnetic
field B, when discussing magnetic fields in matter, since Ampere’s law applied to H reads
∇×H = Jf , and all our tricks with Amperian loops carry over. On the other hand, H is
not a perfect analogue to B: a vector field is determined by its divergence and curl, and
while we have ∇ ·B = 0, ∇×B = µ0J, and ∇× J = Jf , it is not necessarily true that
∇ ·H = 0. When the latter is true, then the analogy can indeed simplify problems. [In
general, we find that ∇ ·H = −∇ ·M = 0 fails at boundaries unless M is tangent to the
surface, for in that case M · da = 0.]

We may also rewrite our boundary conditions for B in terms of H, which may be more
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convenient to apply:

∇ ·H = ∇ ·M ⇐⇒ H⊥
above −H⊥

below = −(M⊥
above −M⊥

below)

∇×H = Jf (Kf ) ⇐⇒ H
‖
above −H

‖
below = Kf × n̂

Especially important are linear paramagnets and diamagnets, those for which the magne-
tization may be written M = χmH, and the magnetic field B = µ0(1 +χm)H =: µH. We
call χm the magnetic susceptibility and µ the permeability of the material. In the case
where ∇ ·H = 0, comparing ∇×B = µ0J and ∇×H = Jf yields simply H = Bvac/µ0

and hence B = µH = (µ/µ0)Bvac.

In a homogeneous linear paramagnet or diamagnet, the (volume) bound current density
Jb is proportional to the free current density Jf :

Jb = ∇×M = ∇× χmH = χmJf ,

and, in particular, unless free current flows through the material, Jf = Jb = 0, and any
net current must reside at the surface. If Jf = 0 everywhere, then the curl of H vanishes
and H can be expressed as the gradient of a scalar potential W , H = −∇W , with
∇2W = −∇ ·H = ∇ ·M. This is Poisson’s equation, and we can generalize electrostatic
boundary value problems to include linear paramagnets and diamagnets.

Electro- and magnetostatics share surprising parallels. On certain occasions, solutions
to an electrostatic problem can be transcribed directly into solutions to a magnetostatic
problem. Consider, for example, the following:

∇ ·D = 0 ∇×E = 0 ε0E = D−P no free charge

∇ ·B = 0 ∇×H = 0 µ0H = B− µ0M no free current

The transcription D→ B, E→ H, P→ µ0M, ε0 → µ0 turns an electrostatic problem
into a magnetostatic one. Similarly, consider

E(r) =
1

4πε0

∫
ρ(r′)

r′′

r′′2
dτ ′

V (r) =
1

4πε0

∫
P(r′) · r′′

r′′2
dτ ′

A(r) =
µ0

4π

∫
M(r′)× r′′

r′′2
dτ ′.

If ρ, P and M are uniform, then the same integral is involved in all three, and knowing
the solution to one of the three equations above immediately allows the solutions to the
other two equations to be written down.

Electrodynamics (Griffiths Ch. 7)

For most substances, the current density J is proportional to the force per unit charge, f :
J = σf = σ(E + v ×B) ≈ σE. This is Ohm’s law; σ is the conductivity of the material,
and ρ = 1/σ the resistivity.

There are two forces that drive current around a circuit: the source fs, normally confined
to a section of the circuit, like a battery, and the electrostatic force, which smooths out
the flow of current. Together, we have f = fs + E. The net effect of this force about one
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loop of the circuit is the electromotive force E ,

E :=

∮
f · dl =

∮
fs · dl.

In an ideal source of electromotive force, like a resistanceless battery, an infinitesimal net
force is enough to start the charges moving, f = 0 = fs + E, and the potential difference
between the terminals a and b is

V = −
∫ b

a

E · dl =

∫ b

a

fs · dl =

∮
fs · dl = E .

Batteries are likely the most familiar source of electromotive force, but the most common
uses generators. Generators make use of motional emf, which arise when wires, say, are
moved through magnetic fields. Charges in the wire experience a magnetic force that
drives current around the loop, and the emf is then

E =

∮
fmag · dl.

There is a handy flux rule applicable to moving loops through magnetic fields, E =
−dΦ/dt, which simplifies some calculations, but has limited applicability outside of cur-
rent loops.

In general, we must make corrections (or restore terms not present in statics) to Maxwell’s
equations when dealing with moving charges. Changing magnetic fields induce electric
fields as dictated by Faraday’s law,

∇×E = −∂B

∂t
,

and our flux rule can be extended to any situation in which the magnetic flux through
a current loop changes. In a pure Faraday field, we have ∇×E = −∂B/∂t and ∇ ·E =
ρ/ε0 = 0, since the field is completely caused by induction, analogous to the equations for
B in the magnetostatic regime, ∇×B = µ0J and ∇ ·B = 0. Faraday-induced electric
fields are determined by −∂B/∂t in exactly the same way that magnetostatic fields are
determined by µ0J, and it follows that all the tricks with Ampere’s law can be used here.

Consider a scenario with two loops of wire. When current is run through one loop, the
magnetic field generated changes the magnetic flux through the other loop of wire, and
by the Biot-Savart law we see that the magnetic field, and hence the magnetic flux, is
proportional to the current run through the first loop, and we can then write Φ2 = M21I1,
with M21 the mutual inductance between the two loops. It turns out that M21 = M12 =
M , that is, the mutual inductance is the same whether you run current through the first
loop or through the second. Further, M depends solely on the geometry between the two
current loops. Actually, running current through a loop not only induces an electromotive
force in other loops, but also induces one in the source loop, Φ = LI. Here we call L the
self-inductance of the loop, and can write the induced emf as E = −L(dI/dt).

The total energy stored in a magnetic field is given by

dW

dt
= −EI = LI

dI

dt
⇐⇒ U =

1

2
LI2.

We can rewrite this in an interesting form, much as we did in the case of electric fields:

U =
1

2µ0

∫
B2 dτ.
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Much as we re-inserted terms into Maxwell’s equations to reach Faraday’s law, we must
similarly re-insert terms to fix Ampere’s law:

∇×B = µ0J + µ0ε0
∂E

∂t
,

as can be concluded from conservation of charge. This provides a pleasing symmetry: just
as changing magnetic fields induce electric fields, changing electric fields induce magnetic
fields. The extra term in Ampere’s law is called the displacement current, Jd = ε0∂E/∂t.
We finally arrive at the complete set of Maxwell’s equations,

∇ ·E =
ρ

ε0
∇×E = −∂B

∂t

∇ ·B = 0 ∇×B = µ0J + µ0ε0
∂E

∂t
.

When dealing with matter, we must introduce also the polarization current, with current
density Jp = ∂P/∂t, which comes from the current due to movement of charges when
the polarization is changed. Rewriting Maxwell’s equations in terms of free charges and
currents, we obtain

∇ ·D = ρf ∇×E = −∂B

∂t

∇ ·B = 0 ∇×H = Jf +
∂D

∂t
.

Here the second term in the Ampere’s law equation is called the displacement current. The
boundary conditions are identical to those derived earlier, for the additional introduced
terms involve fluxes that vanish in the limit of the infinitesimal loops used to identify
boundary conditions. In particular, if there is no free charge or current at the interface,

ε1E
⊥
1 − ε2E⊥

2 = 0 E
‖
1 −E

‖
2 = 0

B⊥
1 −B⊥

2 = 0
B

‖
1

µ1
− B

‖
2

µ2
= 0.

Conservation Laws (Griffiths Ch. 8)

Local conservation of charge gives us the continuity equation

∂ρ

∂t
= −∇ · J.

A charge and current distribution is known at an initial time. In the next instant, the
charges and currents move: what is the work done by the electromagnetic forces on this
charge and current distribution? From the Lorentz force law, F = qE + v ×B, we obtain

dW = F · dl = q(E + v ×B) · v dt = qE · v dt.

Passing to the continuum limit, so that q → ρdτ and ρv→ J, followed by applying
Maxwell’s equations and vector identities, we find

dW

dt
=

∫
V

E · J dτ = − d

dt

∫
V

1

2

(
ε0E

2 +
1

µ0
B2

)
dτ − 1

µ0

∮
S

(E×B) · da.
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This is Poynting’s theorem; we can interpret the first term as the rate of change of the
energy stored in the fields and the second as the flux passing through the surface. The
energy flux density S := (E×B)/µ0 is called the Poynting vector. We can rewrite this
equation in differential form, expressing local conservation of energy:

∂

∂t
(umech + uem) = −∇ · S.

Consider the same distribution as before: what is the total electromagnetic force on the
charge and current distribution in a volume V ? From the Lorentz force law, and again
passing to the continuum limit, we obtain the force per unit volume f = ρE + J×B.
Introducing Maxwell’s stress tensor T,

Tij := ε0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
,

we find that the total force becomes, upon applying the divergence theorem,

F =

∮
S

T · da− ε0µ0
d

dt

∫
V

S dτ.

Physically, T represents the force per unit area (stress) acting on the surface: its diagonal
terms are pressures, and its off-diagonal terms shears. By Newton’s second law,

dp

dt
= F = − d

dt

∫
V

ε0µ0S dτ +

∮
S

T · da.

Once again, this admits a physical interpretation: the first term represents momentum
stored in the fields, and the second the momentum flux through the surface. We can also
rewrite this equation in differential form, expressing local conservation of momentum:

∂

∂t
(πmech + πem) = ∇ · T.

Using L = r× p, we can treat angular momentum similarly.


