
Maximum work from N objects
Find the maximum work that can be extracted from N identical objects with initial temperatures
T1, . . . , TN . Each object has constant heat capacity CV = C.

solution 1. (Pure math.) Our physical problem can be recast as maximizing

W = C
∑
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∑
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i
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)
, ε ≥ 0.

The first equality follows from the first law of thermodynamics. Heat is exchanged solely between objects
within the system and does not leave the system, so any change in the internal energy must be due to
work. The second “equality” follows from the second law of thermodynamics, i.e. entropy is non-decreasing.
This is really an inequality masquerading as an equality, but writing it in this form makes the following
manipulations more intuitive. ε is a non-negative parameter we can freely modify, since the second law is
satisfied for any non-negative ε.

We will apply the technique of Lagrange multipliers. Some algebra lets us write the Lagrangian as
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)
, ε′ ≥ 1.

All additive and multiplicative constants have been removed, which is permissible because this does not
affect any critical points of the Lagrangian. Alternatively, one can leave them in and note that they vanish
upon setting partial derivatives of the Lagrangian equal to 0. We have
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since all other quantities in the right-most term of the first equation are constants. The third equality follows
from the second-law constraint, or formally from 0 = ∂L/∂λ. In addition, since W is maximal when T ′

j is
smallest and T ′

j is proportional to ε′, we set ε′ = 1 to maximize W . By our second-law constraint, this yields

T ′
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The right-most term is interesting, because the quantity within the brackets is exactly the difference of the
arithmetic and geometric means of the initial temperatures.

solution 2. (Some thermodynamics.) Two known facts from thermodynamics solve the maximization
problem completely. First, maximum work is accomplished for a reversible process, for which the net
entropy change, and hence ε, is zero. One can show that this corresponds to ε′ = 1. Furthermore, all final
temperatures {T ′

i} must be equal, for otherwise we can extract more work from the system by running
a Carnot engine between any two objects with a temperature differential. The remainder of the solution
proceeds as before.
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