
Symmetry Methods for Differential Equations, Hydon

Symmetry. We call a transformation a symmetry if it (i) is structure-preserving, (ii) is a C∞ diffeomorphism
(a smooth invertible mapping with a smooth inverse), and (iii) maps the object to itself. To clarify (i), under a
given transformation, a rigid structure must remain rigid, but a flexible structure can become warped.

Lie symmetries. The set of symmetries Γε,

Γε : xs 7→ x̂s(x1, · · · , xN ; ε), s = 1, · · · , N,

is a one-parameter local Lie group if (i) Γ0 is the trivial symmetry, (ii) Γε is a symmetry for all ε in some
ε-neighborhood of 0, (iii) ΓδΓε = Γδ+ε for all δ, ε in some ε-neighborhood of 0, and (iv) each of the x̂s can
be represented as a Taylor series in ε for all ε in some ε-neighborhood of 0:

x̂s(x1, · · · , xN ; ε) = xs + εξs(x1, · · · , xN ) +O(ε2), s = 1, · · · , N.

In particular, (iii) tells us that Γ−ε = Γ−1ε . Lie symmetries must depend continuously on some parameter
ε, unlike discrete symmetries, which do not. An n-parameter Lie group can be regarded as a composition
of n one-parameter Lie groups. In what follows, we will consider the qualifier local implicit and adopt the
notation x1 = x, x2 = y, etc.

Symmetries for first-order ODEs. Given a first-order ODE y′ = ω(x, y), the symmetry condition is
ŷ′ = ω(x̂, ŷ). Considering x̂ = x̂(x, y) and ŷ = ŷ(x, y), we find by differentiation

dŷ

dx̂
=

dŷ/dx

dx̂/dx
=
ŷx + y′ŷy
x̂x + y′x̂y

=
ŷx + ω(x, y)ŷy
x̂x + ω(x, y)x̂y

= ω(x̂, ŷ),

where the last equality imposes the symmetry condition. A solution curve that maps to itself under a
symmetry is called invariant. If all solution curves are invariant under a symmetry, then the symmetry is
called trivial.

Solving first-order ODEs with Lie symmetries. Suppose that translational symmetry in y exists:
(x̂, ŷ) = (x, y + ε). By the symmetry condition on y, we have ω(x, y) = ω(x̂, ŷ) = ω(x, y + ε) = ω(x), since ε
is arbitrary in some ε-neighborhood of 0. Then, at least in such a neighborhood,

y′ = ω(x, y) = ω(x) ⇐⇒ y =

∫
ω(x) dx+ c.

It turns out that all one-parameter Lie groups can be represented as translations in a suitable coordinate
system, as discussed below.

Action of Lie symmetries. The action of a symmetry on the xy-plane is the mapping from (x, y) to
(x̂, ŷ) = (x̂(x, y), ŷ(x, y)). Under this action, the solution curves {(x, f(x))} are mapped to {(x̂, f̃(x̂))},
which defines the function f̃ . The solution curve y = f(x) is invariant under the symmetry if f = f̃ .

Orbits. The orbit of a Lie symmetry through (x, y) is the set of points {(x̂, ŷ)} to which (x, y) can be
mapped by variation of ε; (x̂, ŷ) = (x̂(x, y; ε), ŷ(x, y; ε)). If an orbit consists of a single point, we call that
point an invariant point. By construction, every orbit is invariant under the action of the Lie group. Orbits
cannot intersect, for otherwise the action of the Lie group at the intersection is not well-defined—which orbit
would the point follow?

Invariant points. Consider the action of a Lie symmetry through an arbitrary point (x̂, ŷ) = (x, y; ε = 0)—
arbitrary because the origin of the transformation parametrized by ε is arbitrary. The tangent vector to the
orbit at any point is given by (

dx̂

dε
,

dŷ

dε

)
=: (ξ(x̂, ŷ), η(x̂, ŷ)),

and expanding x̂ (resp. ŷ) in a Taylor series about x (resp. y) yields

x̂ = x+ εξ(x, y) +O(ε2), ŷ = y + εη(x, y) +O(ε2).

An invariant point is independent of the parameter ε, so the point (x, y) is an invariant point if and only if
ξ(x, y) = η(x, y) = 0.
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Characteristic. An invariant curve C must be, by definition, a subset of an orbit. Equivalently, the
tangent to C at every point (x, y) ∈ C must be parallel to the tangent vector (ξ(x, y), η(x, y)). We express
this condition mathematically by defining the characteristic Q(x, y, y′) such that

Q(x, y, y′) := η(x, y)− y′ξ(x, y).

The aforementioned condition holds whenever Q = 0.

Reduced characteristic. On all solutions of y′ = ω(x, y), the characteristic becomes

Q̄(x, y) = Q(x, y, ω(x, y)) = η(x, y)− ω(x, y)ξ(x, y),

and we call Q̄ the reduced characteristic. A solution curve y = f(x) is invariant if Q̄ ≡ 0 over the curve; if
Q̄ ≡ 0 over all y governed by the differential equation, the Lie symmetry is trivial.

Canonical coordinates. We have seen that the translational symmetry (x̂, ŷ) = (x, y+ε) readily allows for
solution of the differential equation y′ = ω(x, y). It remains to find these coordinates for which translational
symmetry exists; that is, coordinates (r, s) = (r(x, y), s(x, y)) such that (r̂, ŝ) = (r, s + ε). At the arbitrary
point (r̂, ŝ) = (r, s; ε = 0), we must have

0 =
dr̂

dε

∣∣∣∣
ε=0

= r̂x(x, y)
dx

dε

∣∣∣∣
ε=0

+ r̂y(x, y)
dy

dε

∣∣∣∣
ε=0

= rx(x, y) ξ(x, y) + ry(x, y) η(x, y),

1 =
dŝ

dε

∣∣∣∣
ε=0

= ŝx(x, y)
dx

dε

∣∣∣∣
ε=0

+ ŝy(x, y)
dy

dε

∣∣∣∣
ε=0

= sx(x, y) ξ(x, y) + sy(x, y) η(x, y).

The invertibility condition associated with these coordinates is rxsy − rysx 6= 0. Such a pair of coordinates
r(x, y), s(x, y) is called a pair of canonical coordinates. By our construction of these coordinates, we further
find that the curves of constant r are invariant orbits under the corresponding Lie group, and therefore call
r the invariant canonical coordinate.

Canonical coordinates are not well-defined at invariant points, for there ξ = η = 0 and the determining
condition for s is not satisfied. They are, however, well-defined on some ε-neighborhood of any noninvariant
point, for which ξ and η are not both zero. Canonical coordinates are also not unique: if r and s are a pair
of canonical coordinates, then so are F (r) and s+G(r), where F and G are arbitrary smooth functions such
that F ′(r) 6= 0, as given by the invertibility condition.

Method of characteristics for canonical coordinates. We may solve the PDE

1 = sx(x, y) ξ(x, y) + sy(x, y) η(x, y)

using the method of characteristics. By considering s = s(x(t), y(t)), taking its total time derivative, and
comparing the resulting equation with the given PDE, we find

ds

dt
= sx

dx

dt
+ sy

dy

dt
=⇒ ds =

dx

ξ(x, y)
=

dy

η(x, y)
,

which defines a characteristic curve on the surface s(x, y). We assume η(x, y) and ξ(x, y) nonzero; the
corresponding equations for η or ξ zero can be worked out analogously. The case when both η and ξ are
zero corresponds to an invariant point, for which canonical coordinates cannot be defined.

First integral of characteristic curves. A first integral or integral of motion of a first-order ODE
y′ = f(x, y) is a nonconstant function φ(x, y) whose value is constant on any solution y = y(x) of the given
ODE. In physical applications, this constant value is known as a conserved quantity. We have

φ(x, y(x)) = c ⇐⇒ φx + φyy
′ = 0,

and, by comparison of the above condition to the condition on r as a canonical coordinate, we see that r is
the first integral of the ODE

y′ =
η(x, y)

ξ(x, y)
, ξ(x, y) 6= 0.
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This resulting equation can also be derived from the cyclic chain rule. This ODE corresponds exactly to that
defining the characteristic curves on s. Solving this differential equation gives y = y(x; r), r the constant of
integration, which is assumed invertible to yield r = r(x, y). In general, this ODE is simpler to solve than
our original ODE, but a notable exception is the case of a trivial symmetry. In this case, the derived ODE
is exactly our original ODE, since for a trivial symmetry η(x, y) = ω(x, y)ξ(x, y), and Lie-theoretic methods
present no simplification.

Solving for canonical coordinates. The previous section discusses how to find the canonical coordinate
r. The canonical pair s is obtained by integrating the characteristic curve equation to yield

s(x, y(x; r)) = s(x; r) =

∫
dx

ξ(x, y(x; r))
=⇒ s(x; r) = s(x; r(x, y)) = s(x, y).

The substitution y = y(r, x) comes from the previous section. Note that r serves only the role of a parameter:
we integrate over a characteristic curve, and r is constant over each of the characteristic curves.

Solving ODEs with Lie symmetries. The ODE y′ = ω(x, y) reduces to quadrature under the transformed
coordinates r and s. In particular, given x = x(r, s) and y = y(r, s), we find that

ds

dr
=
sx + ω(x, y)sy
rx + ω(x, y)ry

=: ϕ(x, y) = Φ(x(r, s), y(r, s)) =: Φ(r, s).

By construction, however,

Φ(r, s+ ε) = Φ(r̂, ŝ) =
dŝ

dr̂
=

ds

dr
= Φ(r, s).

The first equality follows by definition of r̂ and ŝ, the second from the symmetry condition, and the third
by explicit evaluation. Since ε is arbitrary, Φ(r, s) = Φ(r), and we thus have

s(r) =

∫
Φ(r) dr + C,

which can be inverted as a function of x and y by hypothesis.

Linearized symmetry condition. We have previously found that

ŷx + ω(x, y)ŷy
x̂x + ω(x, y)x̂y

=
dŷ

dx̂
= ω(x̂, ŷ).

Expanding x̂ (resp. ŷ) about x (resp. y) to first order, we have

ω + ε[ηx + ω(ηy − ξx)− ω2ξy] =
εηx + ω(1 + εηy)

1 + εξx + ω(εξy)
=
ŷx + ω(x, y)ŷy
x̂x + ω(x, y)x̂y

= ω(x̂, ŷ) = ω + ε(ξωx + ηωy).

Hence simplifying yields the linearized symmetry condition,

ηx + (ηy − ξx)ω − ξyω2 = ξωx + ηωy.

This computation linearizes our original nonlinear PDE, making it more amenable to solution.
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