
Differential Geometry, Kreyszig

10. Tangent and normal plane.

Let C be an arbitrary curve in R3 and x(s) be a parametric representation of C with arclength s as
parameter. Two points of C, corresponding to the values s and s + h of the parameter, determine a chord
of C with direction given by the vector x(s + h) − x(s), and hence also by the vector (x(s + h) − x(s))/h.
The vector

t(s) = lim
h→0

x(s+ h)− x(s)

h
=

dx

ds
= ẋ(s)

is called the unit tangent vector to the curve C at the point x(s).

|t|2 = t · t = ˙x · ẋ =
dx

ds
· dx

ds
= 1,

so t is indeed a unit vector. The direction of t corresponds to increasing values of s and thus depends on
the choice of the parametric representation; introducing any other allowable parameter t gets us

t(t) = ẋ =
dx/dt

ds/dt
=

x′√
(x′ · x′)

=
x′

|x′|
,

since ds2 = dx · dx.

The straight line passing through a point P of C in the direction of the corresponding unit tangent vector
is called the tangent to the curve C at P . The tangent can be represented in the form y(u) = x+ ut, where
x and t depend on the point of C under consideration, and u is a real variable. We may also replace the
unit vector t by any vector parallel to t, say x′, and hence obtain another parametric representation of the
tangent, y(v) = x + vx′. Straight lines are the only curves whose tangent direction is constant, as can be
seen by integrating the vector equation x′ = C.

The totality of all vectors bound at a point P of C which are orthogonal to the corresponding unit tangent
vector lie in a plane, the normal plane to C at P .

11. Osculating plane.

Let x(t) be a parametric representation of a curve C. We seek the limit position of a plane E passing through
three points P , P1, and P2 of C as P1 and P2 tend to P , the osculating plane of C at P .

Denote by t, t + h1, and t + h2 respectively the parametric values at P , P1, and P2. The chords PP1 and
PP2 of C are given by the vectors ai = x(t+hi)−x(t); these vectors, if linearly independent, span the plane
E. Any linear combination of these vectors is also linearly independent, and E is consequently also spanned
by the vectors v(1) = a1/h1 and w = 2(v(2) − v(1))/(h2 − h1), where v(2) is defined like v(1).

The choice of these unusual linear combinations is made clear upon a Taylor expansion of x(t),

x(t+ hi) = x(t) + hix
′(t) +

hi
2
x′′(t) + o(h2i ),

where o(h2i ) is a vector whose components are o(h2i ), and we consider a function g(z) = o(f(z)) if

lim
z→0

g(z)

f(z)
= 0.

Hence we obtain

v(1) = x′(t) +
h1
2
x′′(t) + o(h1)

w = x′′(t) + o(1).

Consequently, if hi → 0, then v(1) → x′(t) and w→ x′′(t). These vectors, if linearly independent, determine
the osculating plane E of the curve C at P .
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We denote by z the position vector of any point of the osculating plane O of C. The vector z− x lies in O;
the vectors z− x, x′, and x′′ are linearly dependent. As such, we can represent the osculating plane of C at
P as

|(z− x) x′ x′′| = 0.

The osculating plane passes through the tangent, and the line formed by the intersection of the osculating
plane with the corresponding normal plane is called the principal normal.

In the exceptional case that the vectors x′ and x′′ are linearly dependent for all values of the parameter t,
then the curve is necessarily a straight line. The osculating plane of a plane curve is always the plane of the
curve.

12. Principal normal, curvature, osculating circle.

Let a curve C be given by an allowable parametric representation x(s) with arclength s as parameter.
Differentiating the relation t · t = 1, we obtain t · ṫ = 0. Hence, if the vector ṫ = ẍ is not the null vector, it
is orthogonal to the unit tangent vector t and consequently lies in the normal plane to C at the point under
consideration; ṫ also lies in the osculating plane. The unit vector p(s) = ṫ(s)/|ṫ(s)|, which has the direction
and sense of ṫ, is called the unit principal normal vector to C at x(s). The straight line passing through this
point and containing p(s) is called the principal normal to C at this point.

The absolute value of the vector ṫ,
κ(s) = |ṫ(s)| =

√
ẍ(s) · ẍ(s),

is called the curvature of C at x(s), whereas the reciprocal of the curvature, ρ(s) = 1/κ(s), is called the
radius of curvature of C at x(s). Straight lines are the only curves whose curvature vanishes identically,
because from κ ≡ 0 we obtain x(s) = a(s) + c, with a and c constant vectors. For future convenience, we
set k(s) = ṫ(s), and call the vector k the curvature vector of C.

The direction of the unit tangent vector t, being the first derivative of x, depends on the orientation of
the curve; the direction of the unit principal normal vector ṫ, being the second derivative, does not, since
replacing the parameter s by −s introduces a negative sign to each derivative with respect to s.

The point M on the positive ray of the principal normal at distance ρ(s) from the corresponding point P of
C is called the center of curvature. The circle in the osculating plane whose radius is ρ and whose center is
M is called the osculating circle or circle of curvature of C at P .

Let us derive an expression for the curvature κ under an arbitrary parameter t. First evaluating

x′ =
dx

dt
=

ds

dt

dx

ds
= t

ds

dt
, x′′ =

d

dt

(
t

ds

dt

)
=

dt

dt

ds

dt
+ t

d2s

dt2
= κp

(
ds

dt

)2

+ t
d2s

dt2
,

and noting that t and p are orthogonal unit vectors, we find

κ =
|x′ × x′′|
(ds/dt)3

=
|x′ × x′′|
|x′|3

=

√
(x′ · x′)(x′′ · x′′)− (x′ · x′′)2

(x′ · x′)3/2
.

13. Binormal. Moving trihedron of a curve.

To every point of the curve at which κ > 0, we have associated two orthogonal unit vectors, the unit
tangent vector t(s) and the unit principal normal vector p(s). We now introduce a third unit vector,
b(s) = t(s) × p(s), orthogonal to both t and p, called the unit binormal vector of C at x(s). The straight
line passing through x(s) in the direction of the corresponding unit binormal vector b(s) is called the
binormal to C at x(s). The triple of vectors t, p, b, in order, form a right-handed basis in R3, and is called
the moving trihedron of the curve.

The vectors t and p span the osculating plane of the curve. The vectors p and b span the normal plane.
The vectors t and b span the plane called the rectifying plane. Hence we have the following representations
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of each plane:

Normal plane: (z− x) · t = 0

Rectifying plane: (z− x) · p = 0

Osculating plane: (z− x) · b = 0

14. Torsion.

The curvature κ(s) measures the rate of change of the tangent when moving along the curve; more abstractly,
it measures the deviation of the curve from a straight line in the neighborhood of any of its points. The
torsion, to be introduced, measures the rate of change of the osculating plane when moving along the curve;
more abstractly, it measures the magnitude and sense of deviation of a curve from the osculating plane in
the neighborhood of the corresponding point of the curve.

The unit binormal vector b is normal to the osculating plane, and it is reasonable to expect that ḃ is a measure
of the rate of change of the osculating plane and will be important in our investigations. Differentiating
b · t = 0, we obtain

ḃ · t = −b · ṫ = −κb · p = 0,

so ḃ and p are orthogonal. In addition, differentiating b · b = 0 shows that ḃ and b are orthogonal—so
unless ḃ is the null vector, in which case the curve is a plane curve, ḃ must lie in the principal normal. We
set ḃ(s) = −τ(s)p(s), or, upon taking the scalar product with p on both sides, τ(s) = −p(s) · b(s), with
τ called the torsion of C at x(s). The sign of the torsion is such that right-handed curves have a positive
torsion.

Let us derive a representation of τ in terms of x(s) and its derivatives. Then

τ = −p · ḃ = −p · d

ds
(ẋ× p) = −p · (ẍ× p + ẋ× ṗ),

and, since p = ρẍ, ẍ× p = 0, and ṗ = ρ̇ẍ + ρ
...
x ,

τ = −|ρẍ ẋ ρ̇ẍ + ρ
...
x | = ρ2|ẋ ẍ

...
x | = |ẋ ẍ

...
x |

ẍ · ẍ
.

The sign of the torsion is independent of the orientation of the curve, and hence it must have geometric
significance. A Taylor expansion on x(s+ h) gives

x(s+ h) = x(s) + hẋ(s) +
h2

2
ẍ(s) +

h3

6

...
x(s) + o(h3).

The vectors ẋ and ẍ lie in the osculating plane, so h3
...
x/6 + o(h3) must determine the sense in which, in a

neighborhood of the point x(s), the curve leaves the osculating plane. By continuity, the difference between
this vector and h3

...
x(s)/6 is arbitrarily small for sufficiently small values of h, and

...
x(s) will therefore also

determine the aforementioned sense. We will consider the torsion of right-hande curves. Recall that a curve
is right-handed if, at x(s), for increasing values of s, it leaves the osculating plane to the positive side of
the plane, as determined by the sense of the unit binormal vector b(s). In this case the angle between the
vectors

...
x and b = ẋ × p = ẋ × ρẍ must be smaller than π/2. Since ρ > 0, the same must be true for the

angle between the vectors
...
x and ẋ × ẍ. Hence |ẋ ẍ

...
x | > 0, and hence τ > 0. Right-handed curves thus

have positive torsion, and a similar analysis shows the opposite for left-handed curves. The reciprocal of the
torsion, σ = 1/τ , is called the radius of torsion.

Carefully differentiating, we can derive the following representation of τ for an arbitrary parameter t:

τ =
|x′ x′′ x′′′|

(x′ × x′′) · (x′ × x′′)
=

|x′ x′′ x′′′|
(x′ · x′)(x′′ · x′′)− (x′ · x′′)2

.

A curve with non-vanishing curvature is planar if and only if its torsion vanishes identically. If the curve is
planar, then b is constant, ḃ = 0, and τ = 0. Conversely, if τ = 0, then b = c, and integrating b · t = 0 gets
us b ·x(s) = c′; that is, the curve represented by x lies in a plane orthogonal to the constant vector b.
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15. Formulae of Frenet.

Since the triplet of vectors t, p, and b form an orthogonal basis, it must be possible to represent the first
derivatives ṫ, ṗ and ḃ of each vector as a linear combination of the aforementioned triple; the corresponding
formulae are called the formulae of Frenet.

We have already investigated two of the three formulae of Frenet,

ṫ = κp, ḃ = −τp,

and shall now find an analogous representation of the vector ṗ. Differentiating p ·p = 1 gives p · ṗ = 0, so ṗ
is orthogonal to p and we can write ṗ = at+ cb. Scalar multiplication by t and b respectively yields

a = ṗ · t = −p · ṫ = −κp · p = −κ
c = ṗ · b = −p · ḃ = τ

where the second equality in each case is a general result between orthogonal vectors:

a · b = 0 ⇐⇒ 0 =
d

dt
(a · b) = a · ḃ + b · ȧ = 0.

We have thus obtained all three formulae of Frenet; written in matrix notation, ṫṗ
ḃ

 =

 0 κ 0
−κ 0 τ
0 −τ 0

tp
b

 .
Note that the coefficient matrix is skew-symmetric. Indeed, the formula of Frenet for ṗ can be derived by
first showing that the coefficient matrix must be skew-symmetric,

cik =

∑
j

cijaj

 · ak = ȧi · ak = −ai · ȧk = −ai ·

∑
j

ckjaj

 = −cki,

and hence using the known formulae of Frenet for ṫ and ḃ.

16. Motion of the trihedron, vector of Darboux.

Because the vectors t, p, and b always have the same mutual position and constant unit length, we may
imbed these vectors in a rigid body K which performs the same motion as the trihedron, and consider our
problem as one involving rigid bodies. We shall consider here only the rotation—and not translation—of the
trihedron along increasing values of the arclength parameter s.

Let P be any point of a rotating body K, and denote by r the position vector of P referred to a coordinate
system with origin on the axis of rotation. r is of the form r = ut+vp+wb; assuming that the point moving
along the curve C under consideration has the constant velocity 1 we may equate the arclength s of C with
the time t, and the velocity vector of P is thus of the form v = ṙ = uṫ + vṗ + wḃ. The rotation (angular
velocity) vector d is given by v = d× r. d is hence orthogonal to v, which, by the formulae of Frenet, lies
in the plane spanned by ṫ and ṗ. Hence d has the direction of the vector

ṫ× ṗ = κp× (−κt + τb) = κ2(t× p) + κτ(p× b) = κ(κb + τt),

and can be represented in the form d = c(s)(τt+ κb). The magnitude of d is a geometric property intrinsic
to the curve, and hence cannot depend on u, v, or w. We can thus determine c(s) by a shrewd choice of u,
v, and w; set v = w = 0, as a result of which v→ ṫ and r→ t. We have

v = d× r ⇐⇒ ṫ = c(τt + κb)× t = cκp = κp

by a formula of Frenet, and we find that c(s) ≡ 1. Hence the rotation vector d is given by d = τt+ κb, and
by choosing separately u = w = 0 and u = v = 0, we see that we can rewrite the formulae of Frenet in the
form

ṫ = d× t, ṗ = d× p, ḃ = d× b.


