
probability and random variables.

probability and distribution functions.

For discrete random variables, the probability function or prob-
ability distribution fX(x) such that

fX(x) := P (X = x)

is the probability that the random variable X takes on the value
x. For continuous random variables, fX(x) is called the proba-
bility density. fX(x) is a non-negative function whose integral
over the sample space of the random variable is one.

The distribution function FX(x) such that

FX(x) := P (X ≤ x)

is the probability that the random variable X takes on values
less than or equal to x.

probability distributions (discrete).

Binomial distribution.

fZ(z) =

(
n

z

)
pz(1− p)n−z, z ∈ N.

The distribution of the number of successes z in n independent
trials with a fixed probability p of success in each trial, denoted
B(n, p).

Poisson distribution.

fZ(z) =
e−λλz

z!
, z ∈ N.

The limit of the binomial distribution under the constraint np =
λ when n → ∞, so that the mean number of events over a
certain time interval is λ. Denoted Poisson(λ).

Geometric distribution.

fZ(z) = p(1− p)z−1, z ∈ N.

The distribution of the number of independent trials z up to and
including the first success with a fixed probability p of success
in each trial, denoted Geometric(p).

Bernoulli distribution.

fZ(z) =

{
p z = 1,

1− p z = 0.

The distribution of the success of an event. Denoted
Bernoulli(p).

probability densities (continuous).

Exponential density.

fX(x) =

{
λe−λx x ≥ 0,

0 x < 0.

The distribution of the time x between consecutive independent
events with mean number of events over a certain time interval
λ. Denoted Exponential(λ).

Normal density.

fX(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
.

The limiting distribution of a sum of independent random vari-
ables with mean µ and variance σ2, denoted N(µ, σ2).

Let U be a random variable uniformly distributed on [0,
1), and define Y = −(1/λ) logU . Show that when λ > 0,
Y is Exponential(λ).

Manipulating the distribution functions is easier than
manipulating the densities, for we have the direct chain
of equivalences

FY (y) = P (Y ≥ y) = P (−(1/λ) logU ≥ y)

= P (U ≥ e−λy) = FU (e−λy)

= 1− e−λy,

and taking a derivative with respect to y yields the de-
sired result. Note that there is no such direct relationship
for the densities, i.e.,

fY (y) 6= fU (e−λy).

Pick a pattern of heads and tails of length L < ∞, and
then flip a fair coin repeatedly until the pattern appears.
Let N denote the number of flips before the first occur-
rence of such a pattern, and show that 〈N〉 <∞.

The distribution of N is difficult to obtain and depen-
dent on the exact sequence chosen because the trials are
correlated for L > 1. Instead, we construct a finite up-
per bound to 〈N〉. Instead of checking every L-trial se-
quence for a match, we only check the sequences 1 · · ·L,
L+1 · · · 2L, 2L+1 · · · 3L, and so on, so that each trial re-
mains independent even when L > 1. Let N ′ denote the
analogue to N in this construction. Our construction
is subsumed in the original construction, which checks
all the sequences of our construction and more, so we
must have 〈N〉 ≤ 〈N ′〉. N ′/L is then distributed as
Geometric(0.5), so that 〈N ′〉 = 2LL <∞.

several random variables.

The above results are readily generalized to larger numbers of
random variables, leading to random vectors x := (x, y, z, · · · )
and multivariate densities f(x) := f(x, y, z, · · · ). Several addi-
tional definitions apply.

Let X and Y be two independent Poisson random vari-
ables with respective parameters λ and µ, and define
Z = X + Y . Show that Z is Poisson(λ+ µ).

We have

P (Z = z) =

z∑
x=0

P (X = x)P (Y = z − x)

=

z∑
x=0

λxe−λ

x!

µz−xe−µ

(z − x)!

=
e−(λ+µ)

z!

z∑
x=0

z!

x!(z − x)!
λxµz−x

=
e−(λ+µ)(λ+ µ)z

z!
,

where the last equality follows from the binomial theo-



rem. Thus Z is indeed Poisson-distributed with param-
eter λ+ µ, as was to be shown.

Given invertible distribution functions FX(x) and FY (y)
such that FX(x) ≤ FY (x) for all x, show that there exist
random variables X and Y with respective distribution
functions FX and FY such that P (Y ≤ X) = 1.

Lemma. Z = F−1Y (FX(X)) has distribution function
FY (z). This follows simply from considering the domain
and range of each relevant function, with

X
FX−−→ [0, 1]

F−1
Y−−−→ Y,

so that Z is distributed according to Y and also
parametrized by X.

Hence choosing X = X, Y = F−1Y (FX(X)), we have

P (Y ≤ X) = P (F−1Y (FX(X)) ≤ X)

= P (FX(X) ≤ FY (X)) = 1,

as desired. The second equality follows because FY in-
creases monotonically and hence respects the inequality.

independence.

Two random variables X and Y are independent iff

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y)

for all x and y. Equivalently,

FX,Y (x, y) = FX(x)FY (y),

and, for f jointly continuous,

fX,Y (x, y) = fX(x)fY (y).

Let X and Y be random variables with joint density
fX,Y (x, y) and sum Z = X + Y . Find the probability
density fZ(z).

By hypothesis, we have

P (Z ≤ z) =

∫
x,y : x+y≤z

dx dy f(x, y)

=

∫ ∞
−∞

dx

∫ z−x

−∞
dy f(x, y),

so that differentiation with respect to z yields

fZ(z) =

∫ ∞
−∞

dx fX,Y (x, z − x).

If f is jointly continuous and x and y are independent,
then in addition

fZ(z) =

∫ ∞
−∞

dx fX(x)fY (z − x),

so that fZ = fX ∗ fY is the convolution of fX and fY .

Given the independent exponential random variables X
and Y with respective parameters λ and µ, show that
Z = min(X,Y ) and the event E = {X < Y } are simi-
larly independent. (P (Z ≥ z, E) = P (Z ≥ z)P (E) iff Z
and E are independent, by analogy to the definition for
two random variables.)

We have

P (Z ≥ z, E) = P (X ≥ z, E)

=

∫ ∞
z

dx

∫ ∞
x

dy λµe−λx−µy

=
λ

λ+ µ
e−(λ+µ)z,

and also

P (Z ≥ z)P (E) = P (X ≥ z)P (Y ≥ z)P (E)

=
λ

λ+ µ
e−(λ+µ)z,

as desired. Note that

P (Z ≥ z, E) = P (X ≥ z, E) 6= P (X ≥ z).

Let (Xr; r ≥ 1) be independent random variables with
Xr = Exponential(λr) and 0 <

∑∞
r=1 λr < ∞, and let

Y = infr≥1Xr. Show that there is, almost surely, a
unique N such that XN = Y , and that

P (N = n) =
λn∑∞
r=1 λr

.

Equivalently, we must show that

1 = P (Xr ≥ X1) + P (Xr ≥ X2) + · · ·

for all r. We have

P (Xr ≥ X1) =

∫ ∞
0

dx1 λ1e
−λ1x1

∫ ∞
x1

dx2 λ2e
−λ2x2 · · ·

=

∫ ∞
0

dx1 λ1e
−λ1x1e−λ2x1 · · · = λ1∑∞

r=1 λr
,

and similarly for the other terms.

marginals.

Given the multivariate density fX,Y (x, y) of the random vari-
ables X and Y respectively, the marginal distribution of X is

fX(x) =

∫
Y

dy fX,Y (x, y),

where the integral spans the sample space of Y given that X =
x. In other words, fX(x) is the probability density for X with
Y “integrated out”. The marginal distribution of Y is defined
similarly.

multivariate change of variables.

Given the random variables U = u(X,Y ) and V = v(X,Y ) for
random variables X and Y with joint density fX,Y (x, y), and



given invertible, once-differentiable functions u and v, we have
from multivariable calculus the standard change-of-variables
theorem

fU,V (u, v) = fX,Y (x(u, v), y(u, v))|J(u, v)|,

where |J(u, v)| is the determinant of the Jacobian J(u, v),

J(u, v) ≡ ∂(x, y)

∂(u, v)
:=

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
.

Given that X and Y are independent Gaussian random
variables N(0, 1), show that Z = X/Y and Z−1 both
have the Cauchy density

fZ(z) =
1

π

1

1 + z2
.

Consider the change of variables Z = X/Y , W = Y .
The multivariate density of X and Y is given by

fX,Y (x, y) =
1

2π
e−(x

2+y2)/2,

and applying the above theorem yields

fZ,W (z, w) = fX,Y (zw,w)|w| = |w|
2π

e−w
2(z2+1)/2.

The marginal distribution fZ(z) is obtained by integrat-
ing out w, giving the desired result. In addition, because
X and Y are identical, we may switch X and Y with-
out loss of generality, yielding also the same distribution
for Z−1 = Y/X. Z and Z−1 therefore share the same
probability density.

expected value.

Let X be a continuous random variable with probability density
fX(x). The expected value or mean 〈X〉 is defined as

〈X〉 =

∫
X

dxxfX(x)

given that ∫
X

dx |x|fX(x) is finite.

Show that a Cauchy-distributed random variable has an
ill-defined mean.

By definition, we have that∫ ∞
−∞

dx
|x|
π

1

1 + x2
=

2

π

∫ ∞
0

dx
x

1 + x2
=∞.

Such a random variable has an ill-defined mean despite
having a line of symmetry about x = 0, the intuitive
guess for the mean.

Tail theorem. A non-negative random variable X with distri-
bution function FX(x) has mean

〈X〉 =

∫ ∞
0

dxP (X > x) =

∫ ∞
0

dx (1− FX(x)).

Proof. Begin by defining the indicator random variable

I(x) =

{
1 X > x,

0 X ≤ x,

so that 〈I(x)〉 = P (X > x) = 1− FX(x). We further have∫ ∞
0

dx 〈I(x)〉 =

〈∫ ∞
0

dx I(x)

〉
=

〈∫ X

0

dx

〉
= 〈X〉,

as desired. The tail theorem relates the expected value 〈X〉
with the distribution function FX(x).

Theorem. Let X be a discrete random variable with probability
distribution fX(x), and let Y = g(X). Then

〈Y 〉 =
∑
x

g(x)fX(x),

given, in analogy to the definition of expected value, that the
sum is well-defined when g(x) is replaced by |g(x)|.

Proof.

〈Y 〉 =
∑
y

yP (Y = y)

=
∑
y

∑
x : g(x)=y

g(x)P (X = x) =
∑
x

g(x)fX(x).

In the second equality, we note that P (Y = y) is exactly the
sum of probabilities P (X = x) such that g(x) = y. In the third
equality, we note that the sum over y and over x : g(x) = y is
exactly a sum over all x. Analogous results hold for continuous
and multivariate random variables.

The expected value operator is linear, satisfying

〈aX + bY 〉 = a〈X〉+ b〈Y 〉.

moments.

We define the kth moment of the random variable X as µk =
〈Xk〉 and the kth central moment of X as σk = 〈(X−〈X〉)k〉. In
particular, the first moment—the mean—is commonly denoted
µ, and the second central moment—the variance—is commonly
denoted σ2.

Show that the variance of the sum of independent ran-
dom variables is the sum of the variance of each random
variable.

Let X and Y be independent random variables and Z
be their sum. We first note the identity

σ2
Z = 〈(Z−〈Z〉)2〉 = 〈Z2〉+ 〈Z〉2−2〈Z〉2 = 〈Z2〉−〈Z〉2,

from which we have

σ2
Z = 〈Z2〉 − 〈Z〉2

= 〈X2 + 2XY + Y 2〉 − (〈X〉+ 〈Y 〉)2

= 〈X2〉 − 〈X〉2 + 〈Y 2〉 − 〈Y 〉2 = σ2
X + σ2

Y ,

as desired. We made use of the independence of the two
variables to set 2〈XY 〉 − 2〈X〉〈Y 〉 = 0.



In considering pairs of random variables, labeled X and Y , we
further define the covariance

cov(X,Y ) = 〈(X − 〈X〉)(Y − 〈Y 〉)〉,

as well as the correlation coefficient or correlation

ρ(X,Y ) =
cov(X,Y )√

σ2
Xσ

2
Y

.

Two random variables with zero correlation (hence also zero
covariance) are uncorrelated.

Show that independent random variables are uncorre-
lated.

Let X and Y be two independent random variables.
Then

cov(X,Y ) = 〈XY 〉 − 2〈X〉〈Y 〉+ 〈X〉〈Y 〉 = 0.

Uncorrelated variables, however, are not necessarily in-
dependent.

conditioning.

For X and Y jointly discrete random variables, the conditional
probability distribution of X given Y is defined as

fX|Y (x | y) :=
fX,Y (x, y)

fY (y)
.

Similarly, the conditional expectation of X given Y is

〈X | Y 〉 =

∑
x,y|Y

xfX,Y (x, y)

/∑
x,y|Y

fX,Y (x, y)

 .

Conditional distributions, expectations, moments, and correla-
tions all satisfy the same properties as their regular counter-
parts. These definitions are also readily generalized to contin-
uous random variables.

We further define two random variables X and Y to be condi-
tionally independent given Z if

FX,Y |Z(x, y | z) = FX|Z(x | z)FY |Z(y | z).

Let X and Y be independent continuous random vari-
ables. Find P (X < Y ).

P (X < Y ) =

∫
Y

dy P (X < Y | Y = y)fY (y)

=

∫
Y

dy FX(y)fY (y).

Identity. For X and Y continuous random variables,

〈X〉 =

∫
X

dxxfX(x) =

∫
X

dx

∫
Y

dy xfX,Y (x, y)

=

∫
X

dx

∫
Y

dy xfX|Y (x | Y = y)fY (y)

=

∫
Y

dy 〈X | Y = y〉fY (y) = 〈〈X | Y 〉X〉Y .

The identity holds true also for discrete random variables, but
the integrals must be replaced with corresponding sums. The
subscripts on the angle brackets make clear which variables the
expected values are taken with respect to.

Let X and Y be independent continuous random vari-
ables. Find P (X < Y ).

We will use our newly derived identity. Define the in-
dicator variable IX<Y , which is 1 when X < Y and 0
otherwise. We note that 〈I〉 = P (X < Y ) and that
〈I | Y = y〉 = P (X < y) = FX(y), so

P (X < Y ) = 〈I〉 = 〈〈I | Y 〉I〉Y = 〈FX(y)〉,

as has been found.

Pull-through property. Given random variables X and Y ,

〈Xg(Y ) | Y = y〉 = 〈Xg(y) | Y = y〉 = g(y)〈X | Y = y〉.

Tower property. Given jointly distributed random variables X,
Y , and Z,

〈〈X | Y, Z〉 | Z〉 = 〈X | Z〉,

which follows from the identity 〈〈X | Y 〉〉 = 〈X〉 when all the
expectation values are conditioned on Z.

generating functions.

The moment-generating function (mgf) of a random variable X
is defined as

MX(t) = 〈etX〉

for all real t such that MX(t) exists. Within a disk of conver-
gence centered about the origin, we have

MX(t) = 〈etX〉 =

∞∑
n=0

tn

n!
〈Xn〉,

so that the moments of X can be obtained as

〈Xn〉 =
dnMX

dtn
(0).

Moment-generating functions are unique: to every probability
distribution is associated a unique mgf, and vice versa. This
correspondence can be constructed directly via Laplace trans-
formation and inversion, with

MX(t) = 〈etX〉 =

∫ ∞
0

dx etxfX(x) = L[fX(x)](−t),

and hence that

fX(x) = L−1[MX(−t)](x).

IfX is defined over the real line and not on the positive half-line,
then we use the bilateral Laplace transform with lower integral
bound −∞ instead of 0. Additionally, moment-generating func-
tions have the continuity property: to a limit of probability dis-
tributions pn(x)→ p(x) is correspondingly associated the mgfs
MXn(t)→MX(t). The proof is difficult and omitted.



Show that

〈X−1〉 =

∫ ∞
0

dtMX(−t).

We have

〈X−1〉 =

〈∫ ∞
0

dt e−tX
〉

=

∫ ∞
0

dtMX(−t).

For jointly distributed random variables X and Y , we can define
the analogous joint mgf

MX,Y (s, t) = 〈esX+tY 〉,

from which singular and joint moments can be obtained by
respective partial derivatives. If X and Y are independent,
then we further have

MX,Y (s, t) = 〈esX+tY 〉 = 〈esX〉〈etY 〉 = MX(s)MY (t).

For discrete, integer-valued random variables, we also define the
probability-generating function (pgf)

GX(s) = 〈sX〉 =
∑
n

snfX(n)

for such a random variable X, satisfying GX(et) = MX(t).
The probability-generating function is a variant of the moment-
generating function with scope limited to such variables.

Let the random variable N be Poisson(λ), X be
Binomial(N, p), and Y = N − X. Show that X and
Y are independent and find the distribution of each.

We have

〈sX〉 =

∞∑
n=0

n∑
x=0

sxP (N = n,X = x)

=

∞∑
n=0

e−λλn

n!

n∑
x=0

(
n

x

)
px(1− p)n−xsx

= e−λeλ(ps+1−p) = eλp(s−1),

〈tY 〉 =

∞∑
n=0

n∑
x=0

tn−xP (N = n,X = x)

=

∞∑
n=0

e−λλn

n!

n∑
x=0

(
n

x

)
px(1− p)n−xtn−x

= e−λeλ(p+(1−p)t) = eλ(1−p)(t−1),

〈sXtY 〉 =

∞∑
n=0

n∑
x=0

sxtn−xP (N = n,X = x)

=

∞∑
n=0

e−λλn

n!

n∑
x=0

(
n

x

)
px(1− p)n−xsxtn−x

= e−λeλ(ps+(1−p)t) = 〈sX〉〈tY 〉,

so indeed X and Y are independent, X being
Poisson(λp) and Y being Poisson(λ(1− p)).

Finally, we define the characteristic function (cf)

φX(t) = 〈eitX〉,

which duplicates the properties of the moment-generating func-
tion and always exists, even when the moment-generating func-
tion may not, because

|〈eitX〉| ≤ 〈|eitX |〉 = 1,

which itself follows from the properties of integration.

Find the characteristic function of the Cauchy distribu-
tion. Show that the corresponding moment-generating
function does not exist apart from the origin.

We have shown earlier that the mean of the Cauchy dis-
tribution is ill-defined, and so too must be its moment-
generating function; this can also be shown by direct
evaluation. The characteristic function of this distribu-
tion is given by

〈eitX〉 =

∫ ∞
−∞

dx
1

π

eitx

1 + x2
= e−|t|

by Cauchy’s residue theorem.

Uniqueness follows from Fourier transformation and inversion,
with

φX(t) = 〈eitX〉 =

∫ ∞
−∞

dx eitxfX(x) = F [fX(x)](t)

and also
fX(x) = F−1[φX(t)](x).

Lévy’s continuity theorem guarantees the continuity property;
the proof is again omitted.

The cf and the mgf are related by analytic continuation in the
complex plane, with φX(t) = MX(it) subject to suitable con-
straints. Given MX(t) on the interval t ∈ (−a, a), then φX(t) is
as stated. Given φX(z) differentiable in the disk |z| < a, then
MX(t) is as stated in the interval t ∈ (−a, a).



introduction to stochastic processes.

simple results.

Markov inequality. Let X be a non-negative random variable.
Then, for any a > 0,

P (X ≥ a) ≤ 〈X〉
a
.

Proof. Define the indicator

I(a) =

{
1, X ≥ a,
0, otherwise.

Clearly aI(a) ≤ X, so that aP (X > a) = a〈I(a)〉 ≤ 〈X〉.

Chebyshev inequality. Let X be a random variable. Then, for
any a > 0,

P (|X| ≥ a) ≤ 〈X
2〉

a2
.

Proof. Apply the Markov inequality with a→ a2 to the random
variable X2, and note that X2 ≥ a2 implies |X| ≥ a.

Borel-Cantelli lemma. Let (An;n ≥ 1) be a collection of events,
and let A be the event {An i.o.} that infinitely many of the An
occur. If

∑∞
n=0 P (An) <∞, then P (A) = 0.

Proof.

A =

∞⋂
m=1

∞⋃
r=m

Ar ⊆
∞⋃
r=m

Ar.

Hence

P (A) ≤ P

( ∞⋃
r=m

Ar

)
≤
∞∑
r=m

P (Ar)

for all m, and the rightmost expression approaches 0 as m→∞.

Second Borel-Cantelli lemma. Let (An;n ≥ 1) be a collec-
tion of independent events with

∑∞
n=1 P (An) = ∞. Then

P (An i.o.) = 1.

The proof is omitted.

issues of convergence.

Summation lemma. Define the event An(ε) = {|Xn −X| > ε}
for ε > 0 for a stochastic process (Xn;n ≥ 0) and a limit X.
As n→∞, P (Xn → X) = 1 if and only if finitely many An(ε)
occur for any ε.

The proof is omitted. Note that, by application of the Borel-
Cantelli lemma,

∑∞
n=0 P (An(ε)) < ∞ implies that P (Xn →

X) = 1.

Convergence almost surely. P (Xn → X) = 1 as n→∞ defines
the strong almost sure convergence, denoted

Xn
a.s.−−→ X.

Convergence in probability. If, for all ε > 0,

P (An(ε)) = P (|Xn −X| > ε)→ 0 as n→∞,

then Xn converges in probability to X and we write

Xn
P−→ X.

Convergence in probability is weaker than convergence almost
surely, for the former is implied by the latter. The inverse, how-
ever, is not true: convergence in probability has no constraints
on the “rate” of convergence, and too slow a rate of convergence
may lead to convergence in probability but not almost surely.

Construct a stochastic process that converges in proba-
bility but not almost surely.

Let each Un be distributed uniformly on [0, 1), and let
the Xn be indicator variables such that

Xn =

{
1, Un < 1/n

0, otherwise.

Then limn→∞ P (Xn = 0) = 1, so the limit X = 0 and

P (|Xn −X| > ε) = P (Xn > ε) =

{
1/n, ε < 1

0, otherwise.

Therefore
Xn

P−→ X.

On the other hand, for any ε ∈ [0, 1) and by the second
Borel-Cantelli lemma, we have P (An i.o.) = 1. Then,
by the summation lemma, P (Xn → X) 6= 1, so Xn does
not converge almost surely to X. The key insight in this
construction is that the harmonic series diverges, sug-
gesting that a stochastic process with relevant probabil-
ities being the terms in the harmonic series will satisfy
the required criteria.

Convergence in mean square. By Chebyshev’s inequality,

P (|Xn −X| > ε) ≤ 〈|Xn −X|2〉
ε2

,

so that a sequence (Xn) converges in probability if
limn→∞〈|Xn − X|2〉 = 0. This latter criterion defines con-
vergence in mean square, and is denoted

Xn
m.s.−−→ X.

Convergence in mean square implies convergence in probability,
but not vice versa.

Construct a stochastic process that converges in proba-
bility but not in mean square.

Consider the previous example given that

Xn =

{
n, Un < 1/n

0, otherwise.

Convergence in mean square neither implies nor is implied by
convergence almost surely.

Construct a stochastic process that converges in mean
square but not almost surely.

Consider the counterexample regarding convergence in
probability but not almost surely.


