Locality Sensitive Hashes for Approximate Spectral Clustering Applied to Text Clustering in Social Media

Background

Opinion Space is a social media tool that uses concepts from dimensionality reduction, collaborative filtering, and deliberative polling to collect ideas about a topic.

We will use SPARK to perform an approximate spectral clustering algorithm to visualize and cluster related words from participant textual comments.

Spectral Clustering

- Family of clustering and dimensionality reduction algorithms related to Spectral Graph theory and eigenvector analysis of Graph Laplacian matrices.
- Non-linear techniques with high accuracy for non-convex cluster decision regions.
- Accuracy comes with $O(n^3)$ time complexity, and with a dictionary of 10,000 words, this can mean $O(10^{12})$ operations.

Text and Clustering Model

- Construct a sparse weighted graph of correlated words weighted by their Pearson correlation.
- Use a two-step embedding and clustering technique similar to Ng et al. (2001).
 - Find a low-dimensional embedding that preserves a word's distance (weight) relative to its neighbors in the graph.
 - Assigns embedded nodes to clusters with k-means.

Approximate Spectral Clustering

- For N words, the formation of a graph and associated $N \times N$ Laplacian matrix is expensive.
- Prior work in approximate spectral clustering addresses this problem.
 - Yan et al. (2009), Chen et al. (2011), Hafeeda et al. (2012)
- Our solution is a Spark-powered parallel workflow based on Locality Sensitive Hashes (LSH) similar to Hafeeda et al.

Locality-Sensitive Hash

- A Random Projection LSH uses random hyperplane cutting to probabilistically bucket data.
- These buckets are used as a heuristic for finding neighbors in the graphical model of words.

Experimental Results

- 2 Opinion Space Projects
 - Foreign Policy (11,497 words and 2149 comments)
 - Online Learning (1,141 words and 153 comments)
- Results
 - Clustered words into 17 groups for the Foreign Policy dataset and 7 groups for the Online Learning dataset.
 - Visualized clusters and an associated 2D embedding in Figure 1, 2

Scalability and Spark

- Use SPARK to form the Laplacian matrix in parallel.
- Spark in-memory computation (RDD's) for efficient analysis of the calculated Laplacian matrix.
- Broadcast variables for efficient eigenvector power-iteration.

Future Work

- Compare method to other approximations such as KASP, RASP.
- Evaluate results of partitioning data and running independent clustering.
- Apply same workflow to other domains such as robot learning.
- Replace k-means with another clustering technique in the embedded space.

References

We would like to acknowledge the UC Berkeley AMPLab and SPARK team that made this project possible. Special thanks to Reynold Xin and Siamak Faridani for help on this project.

sanjay@eecs.berkeley.edu