Comparing Human-Centric and Robot-Centric Sampling for Robot Deep Learning from Demonstrations

Michael Laskey1, Caleb Chuck1, Jonathan Lee1, Jeffrey Mahler1, Sanjay Krishnan1, Kevin Jamieson1, Anca Dragan1, Ken Goldberg1,2

Abstract—Motivated by recent advances in Deep Learning for robot control, this paper considers two learning algorithms in terms of how they acquire demonstrations. “Human-Centric” (HC) sampling is the standard supervised learning algorithm, where a human supervisor demonstrates the task by teleoperating the robot to provide trajectories consisting of state-control pairs. “Robot-Centric” (RC) sampling is an increasingly popular alternative used in algorithms such as DAgger, where a human supervisor observes the robot executing a learned policy and provides corrective control labels for each state visited. RC sampling can be challenging for human supervisors and prone to mislabeling. RC sampling can also induce error in policy performance because it repeatedly visits areas of the state space that are harder to learn. Although policies learned with RC sampling can be superior to HC sampling for standard learning models such as linear SVMs, policies learned with HC sampling perform equally well or better with emerging classes of highly expressive learning models such as deep learning and hyper-parametric decision trees. We compare HC and RC using a grid world and a physical robot singulation task where the input is a binary image of a connected set of objects on a planar worksurface and the policy generates a motion of the gripper to separate one object from the rest. In HC, humans demonstrate the task by tele-operating a 2 DOF robot and in RC, humans provide corrective labels to trajectories generated by the robot after an initial training phase. Performance for a test instance is considered successful when a part is separated on all sides by a 10.0 cm zone after the motion is completed. We observe in simulation that for linear SVMs, policies learned with RC outperformed those learned with HC but that with deep models this advantage disappears. We also find that with RC, the corrective control labels provided by humans can be highly inconsistent. We then prove that there exists a class of examples where in the limit, HC is guaranteed to converge to an optimal policy while RC may fail to converge. These results suggest the surprising result that HC sampling may be preferable for highly expressive learning models like deep learning.

I. INTRODUCTION

For many sequential robot tasks such as driving, walking, and manipulation where the task dynamics are unknown and the reward function is delayed, one promising approach is Learning from Demonstrations (LfD), where a robot learns to perform a task using examples provided by a human supervisor [14], [2], [5], [16], [12]. Learning algorithms such as DAgger have been shown to increase robot performance for a given number of demonstrations. The performance increase has been attributed to the robot visiting states it is more likely to see due to error in learning. However, an emerging class of more expressive learning models such as Deep Learning Networks and decision trees may help alleviate this learning error [13]. Understanding the relative benefits of the learning algorithm versus the learning model motivates a study of DAgger-like methods in the context of model expressiveness.

We consider two classes of learning algorithms that differ in how they acquire demonstrations. “Human-Centric” (HC) sampling is the standard supervised learning algorithm, where a human supervisor demonstrates the task by tele-operating a four-axis robot to separate one object from a connected set of objects. Right: In RC, after initial training, 10 trajectories of the highly-suboptimal robot policy are executed and a human provides corrective control labels for each. Note that the latter trajectories spend considerable time in areas of the workspace that will not be useful after the task is learned.

Fig. 1: HC and RC trajectories used to learn a robot singulation task: top view of 4 objects on a planar worksurface. Left: In HC, 10 trajectories where a human demonstrates the task by tele-operating a four-axis robot to separate one object from a connected set of objects. Right: In RC, after initial training, 10 trajectories of the highly-suboptimal robot policy are executed and a human provides corrective control labels for each. Note that the latter trajectories spend considerable time in areas of the workspace that will not be useful after the task is learned.

While RC methods have significant advantages, it can come at a cost in practice. One cost is the challenge posed to a human supervisor. In RC methods, a human provides corrective feedback, retroactively, to the robot without observing the effect of their suggested control. This requires a human supervisor to predict how the world will change given a control instead of operating the robot with a feedback loop, potentially leading to misleading examples.

A second cost is that RC sampling collects labels on states that occur due to previous errors. These states may require complex corrective actions that do not occur when the supervisor performs the task. For example, consider the task of singulating an object from a set of objects on a table (Fig. 1). Demonstrations involve moving forward and side to side to push obstacles out of the way. However, if the robot makes errors and ends up in a failure state (Fig. 1(right)), then more complex maneuvers will be required. A potential
outcome of this effect is the robots policy can incur larger learning error and not converge to the supervisor’s policy.

This paper explores the value of this extra overhead for emerging classes of highly-expressive models such as deep learning and decision trees. These learners can reduce error in learning and converge to the supervisor’s policy [21].

We first perform experiments with a simulated grid world. By varying the expressiveness of the robot’s policy, we find on 100 randomly generated grid world environments that the performance gap between the two methods diminishes as the expressiveness is increased. Next, using a point mass control example, we find that RC sampling can fail to converge in cases when HC converges.

We then compare the two in physical experiments. We performed a pilot study with 10 members of the lab. In this experiment, each human used RC and HC sampling to train a Zymark robot to singulate an object. We observed a statistically significant gap in the average performance of the policies trained by the two approaches. For 60 trajectories, RC had a success rate of 40% compared with 60%, for HC. We studied the data to identify possible reasons for this difference and our post analysis suggests students had a hard time providing the retroactive feedback for RC sampling.

We finally provide a study of the theory that motivates RC methods. First, we review the online optimization literature from which the theory stems. Then we prove by construction that there exist a class of examples where HC converges to the supervisor, but RC may not.

II. RELATED WORK

Below we summarize related work in HC and RC LfD and their theoretical insights.

HC Poromeleau et al. used HC to train a neural network to drive a car on the highway via demonstrations provided by a supervisor. To reduce the number of examples needed to perform a task, they synthetically generated images of the road and control examples [14]. A similar approach was used by Dilmann et al. to teach a robot to insert perform peg-in-hole using a neural network controller [6]. Schulman et al. used HC LfD for rope tying using kernelized interpolation as the policy class [18]. A survey of HC LfD techniques can be found here [5].

Ross et al. examined HC derived that the error in the worst case from this approach can go quadratic in the time horizon, T [15]. The intuition behind this analysis is that if the distribution induced by the robot’s policy is different from the supervisor’s, the robot could incur the maximum error. Expressive policies can help manage this term, T, by achieving very low training error.

RC RC has been used in numerous robotic examples, including flying a quadcopter through a forest where the state space is image data taken from an onboard sensor [17]. Other successful examples have been teaching a robotic wheelchair to navigate to target positions [10], teaching a robot to follow verbal instructions to navigate across an office building [7] and teaching a robot to grasp in clutter [11].

Ross et al. [16] analyze RC sampling as online optimization. They propose DAgger, an RC sampling algorithm, and show that the error for the robot’s policy is linear in T for strongly convex losses (i.e. regularized linear or kernelized regression). However, the error also depends on the expected loss on the data collected during RC, which may be high due to observing complex recovery behaviors. We analyze this effect and show how it can prevent RC from converging to the supervisor’s policy in Section III.

Extensions to RC have also been recently made, such as forcing the supervisor to provide controls that are easier for the robot to learn from [9]. Kim et al. proposed only to query the supervisor in states that the robot is uncertain about which decision to make [10]. Laskey et al. extended this approach to high-dimensional states [12]. Laskey et al. examined a hierarchy of supervisors (ranked by quality) to reduce the burden on an expert demonstrator [11]. Zhang and Cho trained a classifier to detect when RC would encounter dangerous states during policy execution and have a human take over [22].

LfD Interfaces: Standard techniques for providing demonstrations to a robot are teleoperation, kinesthetic and waypoint specification [3], [4], [5]. Kinesthetic teaching is defined as moving the robot body via a human exerting force on the robot itself. Teleoperation uses an interface such as a joystick or video game controller to control the position of the robot end effector. Waypoint specification, or Keyframes, has a human select positions in the space that the robot needs to visit. These methods are forms of HC sampling because the human guides the robot through the task. We look specifically at teleoperation and compare it to RC’s form of retroactive feedback.

III. PROBLEM STATEMENT AND BACKGROUND

The objective of LfD is to learn a policy that matches that of the supervisor on a specified task that demonstrations are collected on.

Modeling Choices and Assumptions: We model the system dynamics as Markovian, stochastic, and stationary. Stationary dynamics occur when, given a state and a control, the probability of the next state does not change over time.

We model the initial state as sampled from a distribution over the state space. We assume a known state space and set of controls. We also assume access to a robot or simulator, such that we can sample from the state sequences induced by a sequence of controls. Lastly, we assume access to a supervisor who can, given a state, provide a control signal label. We additionally assume the supervisor can be noisy.

Policies and State Densities. Following conventions from control theory, we denote by \mathcal{X} the set consisting of observable states for a robot task, such as images from a camera, or robot joint angles and object poses in the environment. We furthermore consider a set \mathcal{U} of allowable control inputs for the robot, which can be discrete or continuous. We model dynamics as Markovian, such that the probability of state $x_{t+1} \in \mathcal{X}$ can be determined from the previous state $x_t \in \mathcal{X}$ and control input $u_t \in \mathcal{U}$:

$$p(x_{t+1}|u_t, x_t, \ldots, u_0, x_0) = p(x_{t+1}|u_t, x_t)$$

We assume a probability density over initial states $p(x_0)$. The environment of a task is thus defined as a specific instance of a control and state space, initial state distribution, and dynamics.
Given a time horizon $T \in \mathbb{N}$, a trajectory τ is a finite sequence of $T+1$ pairs of states visited and corresponding control inputs at these states, $\tau = ((x_0, u_0), \ldots, (x_T, u_T))$, where $x_t \in \mathcal{X}$ and $u_t \in \mathcal{U}$ for $t \in \{0, \ldots, T\}$.

A policy is a measurable function $\pi : \mathcal{X} \to \mathcal{U}$ from states to control inputs. We consider policies $\pi_{\theta} : \mathcal{X} \to \mathcal{U}$ parametrized by some $\theta \in \Theta$. Under our assumptions, any such policy π_{θ} induces a probability density over the set of trajectories of length $T+1$:

$$p(\tau|\theta) = p(x_0) \prod_{t=0}^{T-1} p(x_{t+1}|u_t, x_t)p(u_t|x_t, \theta)$$

The term $p(u_t|x_t, \theta)$ indicates stochasticity in the applied control, which can occur due to noise in robot execution. While we do not assume knowledge of the distributions corresponding to: $p(x_t+1|x_t, u_t)$, $p(x_0)$ or $p(x_t|\theta)$, we assume that we have a stochastic real robot or a simulator such that for any state x_t and control u_t, we can observe a sample x_{t+1} from the density $p(x_{t+1}|u_t, x_t)$. Therefore, when ‘rolling out’ trajectories under a policy π_{θ}, we utilize the robot or a simulator to sample the resulting stochastic trajectories rather than estimating $p(x|\theta)$ itself.

Objective. The objective of policy learning is to find a policy that maximizes some known reward function $R(\tau) = \sum_{t=1}^{T} r(x_t, u_t)$ of a trajectory τ. The reward $r : \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ is typically user defined and task specific. For example in the task of grasping, the reward can be a binary measure of success.

In our problem we do not have access to the reward function itself. Instead, we only have access to a supervisor, π_{θ^*}, where θ^* may not be contained in Θ. A supervisor is chosen that can achieve a desired level of performance on the task.

We measure the difference between controls using a surrogate loss $l : \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ [16], [15]. The surrogate loss can either be an indicator function as in classification or a continuous measure on the sufficient statistics of $p(u|x, \theta)$.

We measure total loss along a trajectory with respect to the supervisor’s policy π_{θ^*} by $J(\theta, \tau) = \sum_{t=1}^{T} l(\pi_{\theta}(x_t), \pi_{\theta^*}(x_t))$.

HC In HC, the supervisor provides the robot a set of N demonstration trajectories $\{\tau^1, \ldots, \tau^N\}$ sampled from $p(\tau|\theta^*)$. This induces a training data set D of all state-control input pairs from the demonstrated trajectories. The goal is to find the θ_N that minimizes the empirical risk, or sample estimate of the expectation:

$$\theta_N = \arg\min_{\theta} \sum_{i=1}^{N} J(\theta, \tau_i). \quad (1)$$

LfD with RC Due to sample approximation and learning error, one potential issue with RC sampling is that θ^*_N differs from θ^*. Therefore it is possible that new states will be visited under θ^*_N that would never have been visited under θ^*. To account for this, prior work has proposed iterative solutions [16] that attempt to solve this problem by aggregating data on the state distribution induced by the current robot’s policy.

Instead of minimizing the surrogate loss in Eq. [1] LfD with RC sampling [16], [12], [9] attempts to approximate the state distribution the final policy will converge to and minimize the surrogate loss on this distribution. A popular RC LfD algorithm is DAgger [16], which iterates two steps:

1) **Step 1:** The first step of any iteration k is to compute a θ_k that minimizes surrogate loss on the current dataset $D_k = \{(x_i, u_i)|i \in \{1, \ldots, N\}\}$ of demonstrated state-control pairs (initially just the set D of initial trajectory demonstrations):

$$\theta_k = \arg\min_{\theta} \sum_{i=1}^{N} \sum_{t=1}^{T} l(\pi_{\theta}(x_{i,t}), u_{i,t}). \quad (2)$$

Note that equal weight is given to each example regardless of how likely it is under the current policy.

2) **Step 2:** The second step at iteration k, DAgger rolls out the current policy, π_{θ_k}, to sample states that are likely under $p(\tau|\theta_k)$. For every state visited, DAgger requests the supervisor to provide the appropriate control/label. Formally, for a given sampled trajectory $\tau = (x_0, u_0, \ldots, x_T, u_T)$, the supervisor provides labels u_0, where $u_0 \sim \tilde{\pi}(x_0) + \epsilon$, where ϵ is a zero mean noise term, for $t \in \{0, \ldots, T\}$. The states and labeled controls are then aggregated into the next data set of demonstrations D_{k+1}:

$$D_{k+1} = D_k \cup \{(x_i, \tilde{u}_i)|i \in \{0, \ldots, T\}\}$$

Steps 1 and 2 are repeated for K iterations or until the robot has achieved sufficient performance on the task.

IV. EMPIRICAL ANALYSIS

We first provide an empirical comparison of HC and RC LfD. We start with experiments in a Grid World environment, which enables us to vary the robot’s policy class over a large number of randomly generated environments. Then we examine a linear dynamical system, which we use to exemplify a potential limitation in the ability of RC to match the supervisor’s performance when it must learn complex recovery actions. Finally, we compare HC and RC on a real task. We perform a pilot study with 10 participants, who try to teach a robot how to singulate, or separate an object from clutter. We used DAgger as an example of an RC method in these experiments.

A. Policy Expressiveness

In this experiment, we hypothesize that on random problems with a perfect simulated supervisor, the performance gap of RC diminishes as the robot’s policy becomes more expressive.

In Grid World, we have a robot that is trying to reach a goal state, at which it receives +10 reward. The robot receives −10 reward if it touches a penalty state. The robot also receives a −0.02 penalty for every blank state. The robot must learn to be robust to the noise in the dynamics, reach the goal state and then stay there. The robot has a state space of (x, y) coordinates and a set of actions consisting of {Left, Right, Forward, Backward, Stay} state. The grid size for the environment is 15×15. 8% of randomly drawn states are marked as a penalties, while only one is a goal state. For

1 In the original DAgger the policy rollout was stochastically mixed with the supervisor, thus with probability β it would either take the supervisor’s action or the robot’s. The use of this stochastically mixed policy was for theoretical analysis and in practice, it was recommended to set $\beta = 0$ (i.e. RC Sampling only) to avoid biasing the sampling [8], [16]
We measure normalized performance, where we study the effects of noise on the performance of the two when the robot is not able to learn the supervisor’s policy, with prior literature [15], [16]. This outcome suggests that the advantage of using RC LfD diminishes once the robot’s policy is more expressive. When the robot is better able to learn the supervisor policy, it is no longer as beneficial to obtain the robot receives control labels that are a randomly thus the robot receives control labels that are a randomly applied to the observed label, thus the robot receives control labels that are a randomly sampled with probability 0.3.

We use the same decision trees with depth 100. Due to the larger expressiveness of a decision tree it is more susceptible to over fitting. We then compare the performance of HC vs. RC. As shown, both methods are able to converge to the expected supervisor’s normalized performance, suggesting they can average out the noise in the labels with enough data. Although it takes more data than without noise, both methods (HC and RC) converge at a similar rate to the true expected supervisor.

B. Algorithmic Convergence

In this experiment, we show an example in which HC converges to the supervisor’s performance and RC does not. We construct an environment that is representative of our insight that in real problems the policy on all states (including recovery behaviors) is more complex than the policy on the supervisor’s distribution.

We consider the example where a robot needs to learn to get to a location in a 2D continuous world domain. The robot is represented as a point mass with discrete time double integrator and linear dynamics.

The environment contains two sets of dynamics (1 and 2):

\[x_{t+1} = Ax_t + B_1 u_t + w \]
\[x_{t+1} = Ax_t + B_2 u_t + w \]

where \(w \sim \mathcal{N}(0,0.1\mathbb{I}) \). The state of the robot is \(x = (x,y,v_x,v_y) \), or the coordinates and the velocity. The control inputs to the robot \(u = (f_x,f_y) \), or the forces in the coordinate direction. The matrix \(A \) is a \(4 \times 4 \) identity matrix plus the necessary two values to update the \(x,y \) state by the velocity with a timestep of 1. \(B_1 \) and \(B_2 \), correspond to a \(4 \times 2 \) matrix that updates only the velocity for each axis independently. This update corresponds to \(v_{t+1} = v_t + \frac{1}{m} f_t \), where \(m \) is the mass of the robot.

The dynamics for region 1 correspond to the point robot having a mass of \(m = 1 \) and in region 2 the point robot has a larger mass of \(m = 4 \). A target goal state lies at the origin \([0,0]\) and the robot starts out at the point \([-15,-10]\) with a velocity of zero. The boundary for region 1 and 2 lies at \(x = 12 \) and \(y = 12 \), where greater than indicates region 2. An illustration is shown in Fig. 4. The time horizon for the task is \(T = 35 \).

The supervisor is a switching linear system, where each linear model is computed via the infinite horizon LQG for
the specified dynamics. The robot gets feedback from the supervisor based on its current region. The robot’s policy, \(\pi_\theta \), is a linear function which we find via least squares.

We run HC and RC in this setting and plot the performance in Fig. 3 averaged over 200 trials. HC is able to converge to the true supervisor’s policy. However, the RC approach forces the robot to enter region 2. This prevents it from converging because it attempts to fit a single linear policy to two linear supervisors.

C. Real-World Problem

Next, we perform a pilot user study on a real robot to test performance in practice. Participants teach the robot to perform a singulation task (i.e., separate an object from its neighbors), illustrated in Fig. 4. A successful singulation means at least one object has its center located 10 cm or more from all other object centers.

We hypothesize that HC will match the supervisor more accurately than RC in practice, because: 1) RC sampling will cause the robot to try and learn more complex behavior, 2) participants will struggle with providing retroactive feedback.

The robot has a two-dimensional control space, \(\mathcal{U} \), of base rotation and arm extension. The state space of the environment, \(\mathcal{X} \), is captured by an overhead Logitech C270 camera, which is positioned to capture the workspace that contains all cluttered objects and the robot arm. The objects are red extruded polygons. We consider objects made of Medium Density Fiberboard with an average 4” diameter and 3” in height. We use the current image of the environment as the state representation, which captures positional information. The policy is a deep neural network with the architecture from [11]. The network is trained using TensorFlow [1] on a Tesla K40 GPU.

The robot is moved via positional control implemented with PID. Similar to [12], the control space \(\mathcal{U} \) consists of bounded changes in rotation and translation. The control signals for each degree of freedom are continuous values with the following ranges: base rotation, \([-1.5^\circ, 1.5^\circ]\), arm extension \([-1cm, 1cm]\).

During training and testing the initial state distribution \(p(x_0) \) consisted of sampling the translation of the cluster from a multivariate isotropic Gaussian with variance of 20cm and the rotation was selected uniformly from the range \([-15^\circ, 15^\circ]\). The relative position of the 4 objects is chosen randomly. To help a human operator place objects in the correct pose, we used a virtual overlay over the webcam.

We selected 10 UC Berkeley students as human subjects. The subjects were familiar with robotics, but not the learning algorithms behind the techniques. They first watched a trained robot perform the task successfully. They then practiced providing feedback through RC sampling for 5 demonstrations and HC sampling for 5 demonstrations. Each subject performed the first 20 demonstrations via HC sampling. They then performed 40 HC demonstrations and 40 RC demonstrations in a counter-balanced order. In RC, we chose \(K = 2 \) iterations of 20 demonstrations each. The experiment took 2 hours per person on average. People were allowed to repeat both there RC and HC demonstrations, if they requested it.

Each participant trained the robot in both HC and RC LfD (a within-subjects design). In HC, we asked participants to provide 60 demonstrations to the robot using an Xbox Controller, as shown in Fig. 5a. In RC, participants provided 20 initial demonstrations via the Xbox Controller, and then provided retroactive feedback for \(K = 2 \) iterations of 20 demonstrations each.

Retroactive feedback is provided through a labeling interface similar to our previous work [11], illustrated in Fig. 5b. In this interface, we showed a video at half speed of the robot’s rollout to the participant. They then use a mouse to provide feedback in the form of translation and rotation. We provide a virtual overlay so that they can see the magnitude of their given control.

In Fig. 5c, we show the average performance of the policies
trained with RC and HC LfD. Each policy is evaluated on a holdout set of 30 initial states sampled from the same distribution as training. The policies learned with RC have approximately 40% probability of success versus 60% for HC. This suggests that HC may outperform RC when supervision is provided by actual human demonstrations.

D. Understanding RC Performance in Practice

To better understand why RC performed worse than HC, we looked for the two causes in our hypothesis: policy complexity, and human supervision difficulty.

Policy Complexity: We first analyzed the complexity of behaviors collected with RC sampling. In Fig. 11, we show trajectories collected on a single initial state during the study. As illustrated, HC sampling is concentrated around a path needed to singulate the bottom right object. However, RC sampling places the robot in a wide variety of states, some of which would require the robot learning how to move backward or rapidly change direction to recover.

To better analyze this, we examined the surrogate loss on a test set of 10 randomly selected trajectories from each supervisor’s dataset. As shown in Table 1, we observed the average test error over the policies trained with 60 demonstrations in both degrees of freedom (i.e., translation and rotation) is significantly higher. This indicates that the RC policies had a harder time generalizing to unseen labels in their aggregate dataset on average, which may be due to the complexity of the corrective actions.

Human Supervision. We next hypothesized that the participants could have had trouble providing retroactive feedback that is consistent with their true policy. To test this, we asked 5 of the participants to provide 5 demonstrations via teleoperation. Then we asked them to match their controls via the RC labeling interface.

TABLE I: The average surrogate loss on a held out set of 10 demonstrations for RC and tele-operated demonstrations for HC. HC LfD shows a 20% improvement in success at the end.

<table>
<thead>
<tr>
<th>Algorithm Type</th>
<th>Translation (mm)</th>
<th>Rotation (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC LfD</td>
<td>2.1 ± 0.2</td>
<td>0.009 ± 0.001</td>
</tr>
<tr>
<td>RC LfD</td>
<td>3.4 ± 1.0</td>
<td>0.014 ± 0.003</td>
</tr>
</tbody>
</table>

We measured the correlation between the controls applied via retroactive feedback and teleoperation. When calculated over all the participants and trajectories, the Pearson Correlation Coefficient in rotation and translation was 0.60 and 0.22, respectively. A smaller correlation coefficient suggests that it is harder for people to match their control in teleoperation.

In Fig. 7 we plot the control angle from HC sampling versus the control angle from RC sampling, showing that the two are not correlated. We also show two trajectories that a participant teleoperated with their retroactive labels overlayed, both of which suggest disagreement between the teleoperated and retroactive controls. Overall, our analysis suggests that RC sampling can lose the intent of the human supervisor.

V. Theoretical Analysis

To better understand the empirical results from above, we contribute new theoretical analysis on RC and HC LfD. In this section, we first show the existence of environments where HC converges to the supervisor but RC does not. Then we present a new analysis of the accumulation of error for HC.

A. Algorithm Consistency

In this section we work towards a fuller understanding of the tradeoffs between HC and RC. The analysis of RC LfD in [16] is performed in the context of the regret framework of online learning. In online learning [19], at each iteration \(k \in \{1, \ldots, N\}\) the algorithm chooses an action \(\theta_k \in \Theta\) (e.g. a policy to roll out), and observes some loss \(f_k(\theta_k)\). Online learning is analyzed in the context of a regret guarantee: an upper bound (e.g. \(\sqrt{N}\)) on the cumulative loss incurred by the algorithm relative to taking just the best single action in \(\Theta\):

\[
\sup_{\theta \in \Theta} \sum_{k=1}^{N} f_k(\theta_k) - f_k(\theta).
\]

In the context of robotics and specifically in the case of RC LfD, taking an action \(\theta_k\) at iteration \(k\) is rolling out a policy dictated by \(\theta_k\) which induces a series of states \(x_{k, 1}, \ldots, x_{k, T}\) and the loss is evaluated with respect to these states. Because these particular states could have been produced by a poor policy due to initialization, they could have little relevance to the task of interest and consequently, it makes little sense to compare to the policy that performs best on these particular
states. What is important is the absolute performance of a policy on the task of interest. In the notation of Ross et al. [16] this notion of relative regret is encoded in the ϵ_N error term that appears in their bounds and is defined relative to the particular set of rollouts observed by the RC LfD policy.

As an example for why low-regret may be uninformative, consider a car-racing game where the car has constant speed and the policy only decides to go straight, left, or right at the current state. Suppose at some point in the race the car encounters a “v” in the road where one path is a well-paved road and the other path is a muddy dirt road with obstacles. The car will finish the race faster by taking the paved road, but due to either the stochastic dynamics or imperfection of the supervisor it is possible that after just a small number of supervisor demonstrations given to the robot to initialize RC LfD, a poor initial policy will be learned that leads the car down the dirt road versus the paved road. When this policy is rolled out the supervisor will penalize the decision at the time point of taking the dirt versus paved road. But if the policy’s actions agree with the supervisor once the car is on the dirt road (i.e., making the best of a bad situation) this policy will incur low-regret because the majority of the time the policy was acting in accordance with the supervisor. Thus, in this example a globally bad policy will be learned (because it took the dirt road instead of the paved road) but relative to the best policy acting on the dirt road, it performs pretty well.

But more concerning than a potentially uninformative performance guarantee is that RC LfD is performing a greedy strategy for optimization and has the potential to get stuck in local minima. The next theorem shows an instance in which an initial policy can be different enough from the optimal policy that the states visited by the initial policy – even with corrective feedback from the supervisor – are not informative or relevant enough to the task to guide RC LfD to the optimal policy.

Theorem 5.1: For a given environment (state space, action space, dynamics mapping state-action pairs to states, and a loss function) and policy class Θ, let θ_{RC}^N be the policy learned from N supervisor demonstrations, and let θ_{RC}^* be the policy learned by the RC procedure described in Section [III] that is initialized with m supervisor demonstrations. Then there exists an environment and policy class Θ such that

- θ^* is the unique minimizer of $E_{p(\tau | \theta)}[J(\theta)]$,
- $\lim_{N \to \infty} \theta_{RC}^N = \theta^*$ with probability 1,
- $\lim_{N \to \infty} \theta_{RC}^* \neq \theta^*$ with probability at least ce^{-m}

for some universal constant c. In other words, even with infinite data RC may converge to a suboptimal policy while HC converges to the best policy in the class that uniquely achieves the lowest loss.

Proof: Let $\{(x_{k,t}, u_{k,t})\}_{t=0}^3$ denote N trajectories. Consider an environment with a deterministic initial state at the root of the DAG of Figure 8 so that $p(x_{k,0} = \text{root}) = 1$ for all k. The space of policies are constant functions $\theta = \{L, R\}$ where if $\theta = L$ then regardless of the state, the control input $u_{k,t}$ will be to take the left child (and analogously for $\theta = R$ taking the right child). For any state in the DAG with children, let $\phi(x_{k,t}, \theta)$ denote the left child of $x_{k,t}$ if $\theta = L$ and the right child otherwise. The dynamics are described as follows: for some $\mu \in (0, 1/4]$ to be defined later, if $\theta = L$ and $x_{k,t} = \text{root}$ then $p(x_{k,1} = \phi(x_{k,0}, L)) = \mu$ and $p(x_{k,1} = \phi(x_{k,0}, L)) = 1 - \mu$, but if $\theta = R$ then the right child is chosen with probability 1. If $x_{k,t} \neq \text{root}$ then $x_{k,t+1} = \phi(x_{k,t}, \theta)$.

Assume that the supervisor $\pi^* : \mathcal{X} \rightarrow \{L, R\}$ acts greedily according to the given rewards given in the DAG so that $\pi^*(x_{k,t}) = L$ if the reward of the left child exceeds the right child and $\pi^*(x_{k,t}) = R$ otherwise. Finally, define the state loss function $\ell(x, \cdot)$ as the 0/1 loss so that after N trajectories, the loss is given as $J_N(\theta) = \sum_{k=1}^N \sum_{t=0}^2 1\{\pi^*(x_{k,t}) \neq \theta\}$ for all $\theta \in \{L, R\}$. Note that $\theta_N = \arg \min_{\theta \in \{L, R\}} J_N(\theta)$ is equivalent to looking at all actions by the supervisor over the states and taking the majority vote of L versus R (i.e., the states in which these actions are taken has no impact on the minimizer). Note that we have not yet specified how the states $x_{k,t}$ were generated.

We can compute the true loss when the trajectories are generated by $\theta \in \{L, R\}$. Let the empirical distribution of observed states under a fixed action $\theta \in \{L, R\}$ be given by $p(\tau | \theta)$, then

$$E_{p(\tau | \theta = L)} J(\theta = L) = p(x_{k,1} = \phi(x_{k,0}, L)) \cdot 0 + p(x_{k,1} = \phi(x_{k,0}, R)) \cdot 2 = 2\mu$$

$$E_{p(\tau | \theta = R)} J(\theta = R) = 1$$

which implies that $\theta_* = L$ and performs strictly better than R whenever $\mu < 1/2$.

It follows by the stochastic dynamics that the demonstrated action sequence by the supervisor equals $\{L, R, R\}$ with probability μ and $\{L, L, L\}$ with probability $1 - \mu$. After m supervisor sequences, the expected number of L actions is equal to $\mu + 3(1 - \mu) = 3 - 2\mu$ while the expected number of R actions is equal to just 2μ. By the law of large numbers, if only supervisor sequences are given then

$$\arg \min_{\theta \in \{L, R\}} J_m(\theta) \to L = \theta^*$$

as $m \to \infty$ since $3 - 2\mu > 2\mu$ for all $\mu < 1/2$. In other words, $\theta_{RC}^n \to \theta^*$ as $N \to \infty$. We now turn our attention to RC’s policy. Note that if after m supervisor action sequences we have that the number of observed R’s exceeds the number of observed L’s, then RC policy will define $\theta_{RC}^m = R$. This proof assumes $\beta = 0$ in the RC (Dagger) algorithm [16], however it can be extended to include β without loss of generality. It is easy to see that a policy rolled out with $\theta = R$ will receive
We present a new analysis for a class of stochastic policies.

For $k = 1, \ldots, m$ let $Z_k \in \{0, 1\}$ be independent Bernoulli(μ) random variables where $Z_k = 1$ represents observing the supervisor sequence L, R, R and $Z_k = 0$ represents observing L, L, L. Given m supervisor sequences, note that the event $\arg\min_{\theta \in \mathcal{L}(L, R)} J_m(\theta) = R$ occurs if

$$\frac{1}{m} \sum_{k=1}^m Z_k > \frac{3}{4}.$$

Noting that $\sum_{k=1}^m Z_k$ is a binomial(m, μ) random variable, the probability of this event is equal to

$$\sum_{k=\lceil 3m/4 \rceil + 1}^m \binom{m}{k} \mu^k (1-\mu)^{m-k} \geq \Phi \left(\frac{\lfloor 3m/4 \rfloor + 1 - \mu m}{\sqrt{\mu(1-\mu)}} \right)$$

where we have used Slud’s inequality [20] to lower bound a binomial tail by a Gaussian tail. Setting $\mu = 1/4$ we can further lower bound this probability by

$$\Phi \left(\frac{m+2}{3m/4} \right) \geq c e^{-m}$$

for some universal constant c. Consequently, with probability at least $c e^{-m}$ we have that $\lim_{N \to \infty} \theta_{RC}^N = R \neq \theta^*$ which implies that the expected loss of $\lim_{N \to \infty} \theta_{RC}^N$ must exceed the expected loss of $\theta_* = L$.

B. Bound on Error for HC Lfd

In the HC Lfd setting a robot is trained on the states visited by the supervisor. However, at run time the robot may encounter a different distribution of states due to not perfectly matching the supervisor’s policy. Ross et al. showed that given a time horizon T, the worst case error scales quadratically (i.e., $O(T^2 E_{\pi(x|\theta)}[l(\theta^N)])$) when executing the robot’s policy [15]. Note according to the notation of Ross et al., $TE_{\pi(x|\theta)}[l(\theta^N)] = E_{\pi(x|\theta)}[J(\theta^N, \tau)]$. We present a new analysis for a class of stochastic policies that shows a rate of $O(T \sqrt{TE_{\pi(x|\theta)}[l(\theta^N)]})$ (See Supplement Material at [link]).

VI. DISCUSSION AND FUTURE WORK

Motivated by recent advances in Deep Learning from Demonstrations for robot control, this paper reconsiders HC and RC sampling in this context, finding that policies learned with HC sampling perform equally well or better with emerging classes of highly-expressive learning models such as deep learning and hyper-parametric decision trees and can avoid some of the drawbacks of RC sampling.

It is important to note that there are challenges to using such highly-expressive policies. The non-convex optimization required to train deep neural networks can be prone to noise and local minima that can delay or prevent convergence. In future work, we will explore these effects and how sample complexity grows with variance in the initial state. We are also curious if HRI can lead to methods that allow human supervisors to provide more accurate demonstrations. Lastly, it is interesting to examine how methods that constrain the robot’s policy to be near the supervisor’s affect our theoretical analysis [13].

VII. ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the UC Berkeley’s Algorithms, Machines, and People Lab, BAIR, BDD, and the CITRIS “People and Robots” (CPAR) Initiative: [link].

REFERENCES

