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The calculation of the second-order perturbation in hydrogen which gives 
the low-energy part of the Lamb Shift is attacked from a new approach, de- 
scribed in the preceding papers and here extended. A formula is gotten for 
In&) involving a double integral. The final numerical evaluation using an 
electronic computer to sum the series expansion of this formula yields what 
we believe to be the most accurate value of ln(ko) yet given. Small discrepan- 
cies with the earlier results of Harriman are outside the realm of current physi- 
cal significance, but do indicate that the reliability of the earlier results was 
badly overestimated. Approximate formulas for the radiative-perturbed wave 

functions are given; these may be quite useful for further calculations. 

I. PERTURBATION CALCULATIONS IN HYDROGEN 

We shall first describe a specialization of the perturbation calculation tech- 
niques of the previous papers (1, ~3) for the hydrogen atom. In units of Z2e2/2ao 
for energy so/Z for length we have 

E (0) _ 1 
nlm ---1 n2 (1) 

where (t) = a!/b!(a - b)! and Yl,(B, p) is the normalized spherical harmonic. 

* Supported in part by the U. S. Air Force through the Air Force Office of Scientific 
Research. 

178 



VALUE OF THE LAMB SHIFT 179 

We want to calculate the first-order perturbed wave function &,lrno) due to 
some perturbation H1(r, p). The determining equation is [Eq. (1’) of Ref. 11 

(En”’ - Hohkdl) = (HI - E,~m(~))hn(~). 

Let us make the separations in angular momentum 

(HI - Endl)Mndo) = &d YlW(8, (p)e-r’nrz’-lhnl~m~(r) 

and 

# nzm (l) = &d Yp,t(t?, cp)e-““r-l’-‘u,l~,~(r). 

For each l’m’ we have the equation 

The important point is that this equation may be easily solved by a 
transform. Defining 

u(p) = lrn dreepru(r), Q(p) = Jy dre--prh(r)rZL’+l, 

we get the j&t-order differential equation 

(2) 

(3) 

(4) 

(5) 

Laplace 

- 20 + l)p + ; (n + 1’ + 1) U(P) = Q(P). 1 (6) 

Since this is a first-order equation, we can always find u(p) by quadrature. 
But if, as is usually the case, we are interested not in #(‘), but in some energy 
shift 

Ec2) = 1 d&o’ *H2,)(l), (7) 

the solution may become even simpler. If Hz consists only of powers of r and p 
the integrals in (7) reduce to the form 

J 
CQ 

dwte-2r’nu(r) = t U(P) lp=2/n. 
0 

From Eq. (6) we see, however, that we have 

u 2 
0 = 2(n -YT - 1) 

2 
n Q(-) n (8) 

as an algebraic solution. One can easily find derivations of u(p) at p = 2/n as 
an algebraic function of derivatives of Q(p) at p = 2/n. 

This very powerful technique of the Laplace transform will be necessary for 
the more difficult problem of evaluating the Lamb shift. 
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II. THE LAMB SHIFT 

The nonrelativistic part of the Lamb shift (3) of the energy of the n&state of 
hydrogen is governed by the second-order perturbation problem 

in which P implies the principal value of the integral to follow. There is a dif- 
ferent first-order perturbed electronic wave function $(‘) for each value of k 

(E,(O) - Ho - k)!bnlm(l) = Pyb7&(o), 

and this is what makes this problem more complicated than any we have yet 
discussed.’ Proceeding as outlined in the first section, we separate @) into two 
parts as 

Y1+1,,(B, (p)e-“nr-z--2U+(r) @a> 

and 

Y2-l,m(fl, tp)e-7’nrezu-(r), 

with appropriate numerical factors to take care of the angular integrals. We then 
have two equations 

2 8 ( ) (10) 
n- 

CC 

I-l -n 

> ( 
1 s+z-/-~~~l~F5 = 

(21 + s + l)! - n+ ) 
r s+2 1+2*1 

8 s r 

and the solution 

xq-f- 1) C-3 [““u+(r) (srs-L;) (11) 
(21 + s + l)! 22 + 1 

+ & u-(r) 
( 

a+2 

(21 + s + l)r”*’ - ; )I. 
1 Brown et al. (4) suggested that one might evaluate the Lamb shift by this differential 

equation approach. 
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We now carry out the Laplace transforms. 

K ++;p+k $-2p(l+1*1)+2n+~;lfl 
> 1 

*U*(P) = Q*(P), 

Q+(p) = -$ (1 - $)“‘-’ -& (np - n + ; + ‘), 

Q-(P) = & (1 - $) (1 - f)““, 

A,z = pdk; (;y (,@y,)! lg (” - ; - 1) (2z +y+ l)! 

x [$${-s($y - ;(-$J}u+w 

--(al+ s + 1) dp (“>“’ - ;(3’“}u-(Pq& 

(12) 

(13) 

(14) 

The differential Eq. (12) is solved by quadrature. 

u* (3 = ufO (3 IIs:::,+A-.dp (-p2 + ;;“: 
n 

+ 
f 
o(p) 

(15) 

-Q* (; + A) (2A)“x+z*’ /’ dm?l”]c+o, 

where 

U*“(P) 

and 

= 
X+:-P 

:t i 

l/X 

( > 
--1-lq=l 

X-A+P 

-p’+;p+A 

The necessary derivatives of U& are gotten from the differential equation (12). 
The answer is to be compared with the logarithm of the mean excitation energy 
defined by Bethe (3). 

ln[ko(nZ)J = :E 
[ 

- g A,z - a K + In K&o] 
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The desired result appears now as a double integral. We shall carry through 
the evaluation for the 2s and 2p states. 

III. THE 2s-STATE 

Starting with 1 = 0, #(l) contains only p-states, so only U+ enters. Introducing 
the new variables of integration 

eq = 
h-;+P 

A+;-P 

and y = & 06) 

we have 

ln[k0(2s>] = iz 
[ 

ln K - ; K + J;:K+l)-l,2 dylcy)I (17) 

where 

x s,In 1+2d1--Y dq [e-qc3-‘d _ (; ; !i) e-q(2-kJ 

[l - (&ge-q-J ’ 

and we shall evaluate the p integral by a power series expansion in (1 - y)/ 

(1 + y)e-’ < 1. 

I(y) = - 3 
4y”+ (18) 

We shall take care of the singularities at K * 00 (y ---) 0) by extracting 

J(Y) = $ + ‘~;~~,,g’ go (” ; “) (&q 

X- 
[ 

1 
m + 2 + (m + 2yyrn + 3) 1 = & - 

2(3~ + 1) 
Y(l + Y>” * 

We have 

s 

1 

(4K+l) -If2 
dy J(y) = g - In K - k, 
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whence 

In[ko(2s)] = - i + s,’ dy Ly!f’i i,F’ go (2)‘” 

x Cm + OY@Y + 1) 
m+2-2y (20) 

=- ‘G”dr -t 64 s,’ dy Y(l - Y)@Y + 1)@Y - 1) - 

(1 + Y)’ Z(~y~m+t-2y 

Now setting (1 - y)/(l + y) = 2 and using 

J~rn(N = II, +;yf+4) = 
(m~4)[(~~1n(2+fiz) 

+g&&ycJ]7 

we come to 

ln[,ko(2s)] = g - 1024 2 m(m + ‘~~>4~>(m ’ 3, W&m) + X, (21) m=I 

where 

x=22 
m=lk+-4 $ cp 2 & (iyJt7 

c, = (3, -7, -10, 10, 7, -3). 

After much algebra X is evaluated: 

X=il,+4~++E&-41n2~-~-f$E$ 
[ 1 

_ 8 3840 + 234 
C 

- 16807 m b&9 1 - 32[g - &(3) 

+ 128[; - $#s@) - 2+&+@) +~i-&% 

where 

(22) 

(23) 

and values of [6(s) are given in Table I. 
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TABLE I 

VALUES OF THE TRUNCATED ZETA FUNCTION US, EQ. (23) 

s is(s) 

2 0.22132 29557 37116 
3 0.02439 48661 22557 
4 0.00357 13046 98793 
5 0.00058 59663 05921 
6 0.00010 21792 46966 
7 0.00001 84948 54845 
8 0.00000 34316 . 18605 

We are now left with 

ln[ko(2s)] = 3.1779148969 - 1024 g1 F,, 

F, = (m :“1);,“‘1 4)’ [ 
2tg4*4y+ (*T (24) 

.ln2+; . ( )I 
For more rapid convergence we calculate the sum of 

FI=F -I (m+3)! 
m  m  4m!(m + 4)” 

with 

1024 (m+3)! 
-- = 

4 
2 
,1m!(m + 4)’ 

-256kb(4) - 65-b(5) + W&(6) - 6{5(7)] 

= -0.273538422. 

The first 100 terms of CF,,,’ were computed using the Stanford University 
IBM 650 (15 minutes computing time). 

100 

1024 c F,’ = 0.092605684, 
??F=l 

with estimated probable roundoff error ~28 in the last two places. In order to 
get the remainder of the sum we write 

(m + 3)! 
Fm’ = (m - l)!(m + 4)’ 

--& + s,’ dx x2nm x+- 1 , m+4 
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and by performing partial integrations we get an asymptotic series in inverse 
powers of m. 

F,,+; N -!- - 
16m6 (25) 

This, together with the formula 

,~+l&?=(s&p-l-&+&- .**, 

gives the remainder 

1024 2 F,’ = O.OOOOOO908. 
rn=lOl 

Finally our result: 

ln[k&s>] = 2.811769883. (26) 
rt28 

Harriman’s (6) result is 2.811798. The difference is three times Harriman’s 
329 

stated error but amounts to an insignificant 0.004-megacycle increase in the 
level shift. Bethe et al. (5) got the value 2.8121 which just overlaps ours. 

f4 

IV. THE Pp-STATE 

The s- and d-wave parts of #“’ are separated and the two calculations proceed 
similarly to that just detailed for the 2s-state. The principal value of the in- 
tegral must be taken on account of the possible real transition 2p - 1s. The 
In K-divergence exactly cancels between s- and d-wave parts as it should. The 
resulting formula is 

ln [koc?p:)l = (m + 2)3(11m2 -I- 44m -I- 32) 

59 256 In 2 f 3N - 270 421 
-- + + @@(%j+y’ 

(27) 
360 37 

y = -2 3 2 m+ 2 d8 2 & (*)‘-’ m=l ’ 

d, = (2, -9, 5, 16, -16, -5, 9, -2); 

2 The stated error is our estimate of the roundoff error in the numerical computation. 
The electronically computed part of the work has been redone with extra precision and 
agrees with the above, within these stated errors. 
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and finally we get 

ln[k0(2p)] = -0.030016697, (28) 
ZtlZ 

while Harriman (6) had -0.03001637 and Bethe et al. (5) got -0.0300. 

The discrepancy here is 33 times th:stated uncertainty, but is much*too small 
to be physically significant. 

V. APPROXIMATE CALCULATIONS 

The actual functional form of the electron wave function $“’ perturbed by the 
emission of a photon of energy Ic may be useful in other calculations. The solu- 
tion contained in (9a), (15) is however quite complex, and we seek a simple 
approximation here. For the Is- and 2s-states we have found that the function 

has the same form as the exact $(I) for small T, small k, and large k. Setting 
3/(l) = Cx we construct a variational expression for A Eq. (9) [see Eqs. (9) and 
(10) of Ref. I]. 

Then varying with respect to C 

c = Id&?, 

A Lz I1”/Iz . 

For the 1s state we find 

II = 6 - K, 

Is = -K -4 In K + 20 + 4 In 2; 

dropping terms of order l/K. Finally 

A1,~-K+4lnK-8-4ln2 

---f -K + 4 In K - 4 ln[&(ls)], 

so ln[ko(ls)] M 2 + In 2 = 2.69, instead of 2.98. For the 2s state we have 

(30) 
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* -+@C + x In K - g ln[/co(2s)] 

so In[k0(2s)] z IOK2 - 195 In 2 = 2.50 instead of 2.81. 
It seems remarkable that so simple a form as (29) could give exactly the two 

leading terms for large K and still give values of In Ice which are accurate to 
within 10 percent. 

RECEIVED: November 12, 1958 
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