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This work extends the previous development of new mathematical machinery for
nonlinear operators acting on a vector space. Starting from the usual concept of
inner product, we find that Hermitian, anti-Hermitian, and unitary nonlinear opera-
tors can be defined without bringing in the ideas of a dual vector space or adjoint
operators. After looking briefly at how these general ideas might be used in clas-
sical mechanics and to extend the linear Schro¨dinger equation of quantum theory,
the topic of Lie groups and Lie algebras is studied. Many, but not all, of the
familiar features of that topic are extended to nonlinear operators. New represen-
tations are found for a few simple cases of interest to physics, and some provoca-
tive implications for elementary particle theory are discussed. ©1997 American
Institute of Physics.@S0022-2488~97!04307-7#

I. INTRODUCTION

This paper continues a programmatic effort to see how far the conventional mathema
quantum theory—which is based upon the application of linear operators in a Hilbert space—
be extended to include rather general nonlinear operators. Previous authors have investigat
happens when one adds nonlinear terms to the Schro¨dinger wave equation. The present study,
contrast, is not limited to any such particular equation, but rather reworks the more ge
mathematical structure of quantum theory: Physical states represented by vectors in an a
Hilbert space and the operators that act upon these vectors, transforming them into other v

A recent paper, titled ‘‘NonLinear Operators and Their Propagators’’1 and hereafter referred
to as I, presented the beginnings of this program. Key to that work was the definition of the ‘
product’’ A/B of two nonlinear operators and the development of an algebra and calculus a
priate for such operators. With the new mathematical tools many of the results familiar i
theory of linear operators could be extended to nonlinear operators: generalizing the expo
of an operator, time-dependent perturbation theory, the Baker–Campbell–Hausdorff theore
other results. The present paper presents still further progress.

These new analytical tools may be of practical use in some areas of classical physics a
For example, in I it was shown how a powerful technique for the numerical computation of
propagation, first developed for linear equations, could be extended to general nonlinea
equations. However, the driving ambition of this work is an attempt to expand the frontie
fundamental physics—the quantum theory. A particular focus here is to follow Wigner’s g
theoretical approach to the construction of elementary particle states and to see what new
of interest to physicists might be found by the consideration of nonlinear symmetry operato
their group representations. Thus most of the present paper works to rebuild the familiar
ematical infrastructure leading up to the theory of Lie groups and Lie algebras, extending
accommodate nonlinear operators as well as the conventional linear ones.

After a review, in Sec. II, of the operator algebra and calculus previously developed, Se
goes into inner products, Hermitian, anti-Hermitian, and unitary operators, and we find that
not need to speak of the adjoint of an operator nor of a dual vector space. Whereas so m
traditional quantum theory is based upon the assumption of superposition—mandating line
erators in a vector space—it is again surprising how much can still be achieved if one aba
that habit.

Sections IV and V give sample applications of these new techniques to classical mec
0022-2488/97/38(7)/3841/22/$10.00
3841J. Math. Phys. 38 (7), July 1997 © 1997 American Institute of Physics

5¬May¬2007¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



ries of
of the

ebras
slash
eral

X; and
rticular
e
on of
. XIII,
ntary

m the
opera-

tors

from

3842 Charles Schwartz: Nonlinear operators. II

Downloaded¬1
and the Schro¨dinger wave equation, respectively. Section VI presents some special catego
nonlinear operators: amplitude invariant, phase invariant, and those that do not make use
operator of complex conjugation.

In Sec. VII we show that the general mathematical structure of Lie groups and Lie alg
can be extended to nonlinear operators: using the generalized exponential function, the
commutator, and the new form for similarity transformations. In Sec. VIII we look at the gen
question of finding representations, paralleling much of the familiar work on linear~matrix!
representations. The problem of building direct product representations is looked at in Sec. I
some simple examples of nonlinear representations are presented in Sec. X. Further pa
studies of Lie group representations—for SL(2,R) and SU~2! in one and two dimensions—ar
given in Secs. XI and XII, where we find some intriguing new representations. The questi
singularities, combined with a unique construction of a composite state is the topic of Sec
where we find a provocative result; and the possible application to the theory of eleme
particle physics is discussed in Sec. XIV.

Appendices A and B present some additional results on power series, carried over fro
previous paper: and Appendices C and D contain further new results concerning nonlinear
tors.

II. REVIEW OF NONLINEAR OPERATOR ALGEBRA

Nonlinear operatorsA,B,C,..., act onvectors in a linear vector space to produce other vec
in that space.

Ac5f. ~1!

Note the convention that operators act to the right.
The operators have the following algebra of addition and multiplication:

A1B5B1A, ~2!

~A1B!C5AC1BC, ~3!

~AB!C5A~BC!, ~4!

and, as with linear operators, multiplication is not commutative. What distinguishes these
linear operators is that

Aa is not equal toaA, ~5!

wherea, b, c,••• are ordinary numbers; and also that

A~B1C! is not equal toAB1AC. ~6!

The central tool of analysis is the following definition:

A~11eB!5A1eA/B1O~e2!, ~7!

whereA/B is an operator called ‘‘the slash product ofA with B. ’’ The following properties were
derived in I.
Linearity:

~A1B!/C5A/C1B/C, ~8!

A/~B1C!5A/B1A/C, ~9!
J. Math. Phys., Vol. 38, No. 7, July 1997
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~aA!/B5a~A/B!, ~10!

A/~bB!5b~A/B!. ~11!

This last statement under Linearity, Eq.~11!, is strictly true only ifb is a real number—as the
infinitesimale is taken as a real number. In certain cases, which will be detailed later on, this
also be true for complex numbersb.
The first identity:

~AB!/C5~A/C8!B, ~12!

where

C85~B/C!B215CB ~13!

is a new form of similarity transformation.
The second identity:

~A/B!/C2A/~B/C!5~A/C!/B2A/~C/B!. ~14!

A key construct is the generalized exponential function of an operator.

E~A!511A11/2 A/A11/6 ~A/A!/A11/24 ~~A/A!/A!/A1••• . ~15!

The following properties were derived in I:

d

dt
E~ tA!5AE~ tA!5E~ tA!/A; ~16!

E~sA!E~ tA!5E~~s1t !A!; ~17!

BE~A!5~E~A!/B!E~2A!5S1/n!Sn , ~18!

where

S05B and Sn5@A/Sn21# ~19!

and the ‘‘slash commutator’’ is defined as

@X/Y#5X/Y2Y/X. ~20!

In the special case of linear operators, just drop the / symbol~or replace it by a comma in the
commutator! and all these formulas are familiar. The remarkable fact is that so many of the t
commonly done with linear operators can be generalized in this manner to nonlinear ope
and these are not just abstract or formal generalizations but practical computable construc

III. INNER PRODUCTS, HERMITIAN AND UNITARY OPERATORS

In our vector space the general vectorc will be represented by an ordered set of compone
~complex numbers!, $c1 ,c2 ,c3 ,•••%, usually written as the set$ck%; or I may writecuk5ck ,
where the symboluk means ‘‘take thekth component of the resulting vector standing to the lef
The inner product of two vectors will be written, as usual, as

^fuc&5^cuf&*5Skfk*ck , ~21!
J. Math. Phys., Vol. 38, No. 7, July 1997
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where* means complex conjugation.~Some other metric might be introduced but I shall stay w
this simplest one here.!

The result of a general nonlinear operatorA acting on the vectorc will be another vector,
represented as

Ac5$Ak~c,c* !% or Acuk5Ak~c,c* !, ~22!

where the script symbolsA are ordinary functions of their arguments, the set of complex v
ablesck and their complex conjugates.

Now, consider the inner product,

^fuAc&5Skfk*Ak~c,c* !. ~23!

and the complex conjugate of this equation,

^Acuf&5SkfkAk~c,c* !* . ~24!

In the case of linear operators this leads to the definition of an adjoint~Hermitian conjugate!
operatorA† which acts on the vectorf. But in the general study of nonlinear operators this id
of an adjoint operator seems to make no sense. Thus I do not speak of adjoint or dual vecto
of column and row vectors, which are concepts particular to linear operators and their m
representation.

What comes as a surprise, however, is how much can still be achieved if we limit oursel
studying only the ‘‘expectation value’’

^A&5^cuAc& ~25!

of the operatorA in the ‘‘state’’ represented by the vectorc.
Let us first examine the situation in the standard dynamical model, wherec5c(t) varies with

time according to the equation

dtc5
dc

dt
5Ac ~26!

and the operatorA is assumed time independent. What is the time derivative of the inner prod

dt^cuc&5^dtcuc&1^cudtc&5^Acuc&1^cuAc&5Skck*Ak~c,c* !1cc. ~27!

All we can say from this equation is the following: If^A& is imaginary, then̂cuc& will be time
independent. But this is saying a lot.

Definition: A general nonlinear operatorA will be called ‘‘anti-Hermitian’’ if its average
value ^cuAc& is imaginary for all vectorsc; and it will be called ‘‘Hermitian’’ if ^cuAc& is
always real. ~28!

If one takes the special case of linear operators, whereA is represented by a matrix with
matrix elementsAjk , these two definition lead to the familiar conditions

Ajk*52Akj or Ajk*51Akj , ~29!

respectively.
Definition: A general nonlinear operatorU will be called ‘‘unitary’’ if

^UcuUc&5^cuc& ~30!

for all vectorsc.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Again, for the special case of linear operators, this definition leads to the usual equation
unitary matrix:

SkUki*Ukj5d i j . ~31!

We have previously devoted much study to the generalized exponential function of a n
ear operatorE(A). We know that the dynamical equation~26! is solved by

c~ t !5E~ tA!c~0!; ~32!

and thus, ifA is anti-Hermitian, we have already shown that

^c~ t !uc~ t !&5^E~ tA!c~0!uE~ tA!c~0!&5^c~0!uc~0!&. ~33!

ThusE(tA) ~for real t! is unitary as long asA is anti-Hermitian.
Next, we want to calculate the time derivative of^B&5^c(t)uBc(t)&, whereB is some

general~t independent! operator. First, we recall that

dtBc~ t !5~B/A!c~ t !, ~34!

so we need to evaluate the slash product operating in our vector space.
Let us digress to do this in general. First we look at,

~11eB!cuk5ck1eBk~c,c* ! ~35!

then

A~11eB!cuk5Ak~$c j1eB j~c,c* !%,$c j*1eB j~c,c* !* %! ~36!

and finally

A/Bcuk5(
j

@B j~c,c* !] j1B j~c,c* !* ] j* #Ak~c,c* !, ~37!

where

] j5
]

]c j
and ] j*5

]

]c j*
. ~38!

Thus we can write for general operatorsA andB

^cuA/Bc&5(
j ,k

ck* @B j] j1B j* ] j* #Ak , ~39!

where I have dropped the arguments (c,c* ) of A andB for easier reading. And this can b
rewritten neatly as

^cuA/Bc&5D~B!^A&2(
k
Bk*Ak , ~40!

where the differential operatorD(B) is defined as,

D~B!5(
j

@B j] j1B j* ] j* #; ~41!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and we note thatD(B) is always real. We can now draw the following conclusions:

If A and B are Hermitian operators, so isA/B1B/A, ~42!

If A and B are anti-Hermitian operators, so is@A/B#5A/B2B/A. ~43!

And there is one more result, which looks awkward but will be useful: IfA is anti-Hermitian and
B is Hermitian, then

Rê @A/B#&52D~A!^B&. ~44!

Now we return to the calculation started above.

dt^c~ t !uBc~ t !&5^c~ t !uB/Ac~ t !&1^Ac~ t !uBc~ t !&5D~A!^B&. ~45!

Thus if B is a Hermitian operator~and we haveA as anti-Hermitian!

dt^B&52Rê @A/B#&; ~46!

and if B is anti-Hermitian, then we can write~settingB→ iB!,

dt^B&5 i Rê @A/ iB#&. ~47!

In the case of linear operators, these formulas reduce to the well-known formula of qua
mechanics,

dt^B&5 i ^@H,B#&, ~48!

whereH5 iA is the Hamiltonian~in units h52p!.
Suppose we setA52 iH for the general nonlinear equation of motion.H is a Hermitian

operator and one wonders whether it is ‘‘conserved.’’ That is, Does^H& vary with time? From Eq.
~46! we have,

dt^H&5Rê @ iH /H#&. ~49!

For linear operators this commutator is obviously zero; and for general nonlinear operators w
have@H/H#50. But @ iH /H# is something else in general. Thus we must have a special cons
upon the structure of the nonlinear Hamiltonian in order to get ‘‘conservation of energy’’ in
form. The simplest statement is: IfH, acting on any vector, does not involve the operation
complex conjugation, then@ iH /H#50; but with this restriction it may be difficult to insure tha
H is Hermitian.

Another condition to consider is the following:

Heif5eifH~real f! or equivalently @H/ i #50. ~50!

Another phrase that describes this restriction is: the equation of motion obeys gauge invaria
the first kind. With this condition, we can seek stationary states of the equation of motion

c~ t !5e2 ivtu and Hu5vu. ~51!

With such states, we obviously have^cuc& and ^cuHc& independent of the timet. But this does
not give us energy conservation as a general rule, i.e., for allc(t), unless@ iH /H#50 is also
satisfied. We shall return to this subject shortly. One should also note that the eigenvalue p
associated with such stationary states is entangled with the question of what normalizatio
should choose for the state vector.
J. Math. Phys., Vol. 38, No. 7, July 1997
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In regular quantum theory, unitarity is usually invoked in connection with general scatte
measurement theory. An initial state is prepared; and it then evolves in time according to a
function~state vector! c(t) which may include some interactions of initially separated parts. Th
after the scattering process, we make measurements of the outcome by projecting this
function onto various final states by means of detection apparatus. If any such final s
represented by a vectorun& in the vector space, then the probability that this particular final s
will be detected is said to be calculated as

Pn5u^nuc~ t !&u2 ~52!

and ‘‘unitarity’’ is the requirement that the sum of these probabilities over all possible final s
un& is equal to one. How does this work in our situation with nonlinear operators?

We make the usual assumption that the vectorsun& constitute a complete orthonormal basis
the vector space; and this leads to the result

( Pn5^c~ t !uc~ t !& ~53!

regardless of whether we have linear or nonlinear operators in the equations of motion. But
just the quantity we studied earlier; and we saw that, as long as the dynamical operatoA is
anti-Hermitian, this total probability is independent of the timet. Thus it can be evaluated bac
when the initial state was created, with the usual norm of 1.

IV. REAL VECTOR SPACE

If we restrict ourselves to a vector space and operators which involve only real number
complex numbers, then the results of the previous section become even simpler. If the dyn
operatorA obeys the condition

^cuAc&50 for all vectors c, ~54!

then ^c(t)uc(t)& will be time independent.
Let’s see how this works in a very familiar problem, Newton’s law of motion in one dim

sion.

d2x

dt2
5F~x!. ~55!

Since this is second order in the time derivative, we introduce a new variableu and construct a
two-component vectorc5$x,u% to satisfy the first order equation of motiondc/dt5Ac. These
are all time-dependent variables. We now construct the dynamical operatorA so as to guarantee
the condition^cuAc&50

Ac5$uW~x,u!,2xW~x,u!%. ~56!

In order to find the unknown functionW, we look at the equations of motion,

dx

dt
5uW, ~57!

du

dt
52xW, ~58!
J. Math. Phys., Vol. 38, No. 7, July 1997
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take another time derivative ofdx/dt and compare with the original Newton’s law involving th
forceF(x). The resulting equation is

F2x21/2 xu
d

du
11/2 u2

d

dxGW25F~x!. ~59!

This looks unfamiliar, and messy. A solution of this equation~which I found after making a powe
series expansion inu2! is

W~x,u!51/u@V~~x21u2!1/2!2V~x!#1/2, ~60!

whereF(x)52dV/dx. We also have a constant of the motion

^cuc&5x21u2. ~61!

I don’t see that this adds anything useful to the study of Newton’s equation of motion; b
illustrates our general approach.

V. NONLINEAR SCHRODINGER EQUATION

Here, we continue a discussion begun in I. Assume we have several components of a c
wavefunction which depend on one or more continuous variablesx: ck5ck(x,t); and we shall
deduce equations of motion from an action

1/2E dtE dxH(
k

~ ick* dtck2dxck* dxck!2G~r,x!J , ~62!

whereG is a real ~local! function of the densitiesrk5ck*ck and may include as well som
external force. Varyingck* we get the equation of motion

dtck5 idx
2ck

2 i ]G

]rk
ck5Acuk ~63!

and we immediately see that our dynamical operator is anti-Hermitian:^A& is imaginary. This
assures us conservation of probability. We also have a conserved current density just as
usual Schro¨dinger equation. But what about conservation of energy? This was the question
in a previous section.

If we look upon the action from the point of view of classical Lagrangian field theory, then
know how to derive the time-independent Hamiltonian from canonical variables:H5(piqi2L.
The result for the action given above is

H5E dxH(
k

S dxck* dxck11/2 rk
]G

]rk
D11/2 GJ ~64!

which is clearly different from

^ iA&5E dx(
k

S dxck* dxck1rk
]G

]rk
D ~65!

unlessG is linear in ther’s.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Thus we have~re-!learned the lesson that for nonlinear systems the operator which give
time development is not the same as the operator which gives the conserved quantity
called energy; but in the usual linear quantum theory these two things are both called the H
tonian.

The above results can also be written in a more compact manner as follows. Let us wr
action as

E dt 1/2̂ cu
i ]

]t
2Vuc&, ~66!

whereV is some general operator. Then we find that we can write

^ iA&5^V11/2~V/11 iV/ i !& ~67!

and

H5^V&11/4̂ ~V/11 iV/ i !&* . ~68!

Note that for linear operators the expression (V/11 iV/ i ) vanishes.
A number of previous authors have explored nonlinear generalizations of the Schro¨dinger

wave equation.2,3 A persistent problem is how to achieve in a consistent mathematical way
physical separability of noninteracting systems. This is a deep concern, which we shall retur
studying group representations later in this paper.

VI. SPECIAL TYPES OF OPERATORS

Following the previous discussion, let us introduce a nomenclature for certain class
nonlinear operators, as follows.

Type 1:OperatorsA which satisfyAa5aA, for all positive real numbersa, or equivalently
@A/1#50. These operators may be called ‘‘amplitude invariant.’’ ~69!

Type 2: OperatorsA which satisfyAeif5eifA for all real numbersf, or equivalently
@A/ i #50. These operators may be called ‘‘phase invariant.’’ ~70!

Type 3:OperatorsA which do not involve the operation of complex conjugation when th
act on any vector. ~71!

If A is an operator of Type 3, thenA/ iB5 iA/B, or more generally,A/bB5bA/B for any
complex numberb and any operatorB. Note that Type 2 status does not in general suffice for
result.

A nonlinear operatorA which is of Type 1 and also of Type 2 has the property thatAac
5 aAc for any complex numbera; and has been called ‘‘homogeneous’’ by Weinberg.3

An operatorA of Type 3 also gives (A/11 iA/ i )5@A/1#1 i @A/ i #50; and this is also true if
A is both Type 1 and Type 2. Recall the discussion at the end of the preceding section.

If an operatorA is of Type 3 and also of Type 1~or 2!, then it must also be of Type 2~or 1!.
But being of Type 1 and also of Type 2 does not in general imply being of Type 3.

If an operatorA is of some given Type~1, 2, or 3!, thenaA, for any numbera, is of that same
type. If operatorsA andB are both of the same Type~1, 2, or 3!, then (A1B), AB, A/B are also
of that same type. Thus ifA is of some given type, thenE(A), and many other functions forme
from A, will be of that same type.

A special nonlinear operator~already used in conventional quantum theory! is the operator
K which takes the complex conjugate of all the components of the vector standing to its ri

Kc5c* ; ~72!

and we noteKK51. For any operatorA we can define its complex conjugate as
J. Math. Phys., Vol. 38, No. 7, July 1997

5¬May¬2007¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



e

group

obi
in

hinery
ture to
gebra,

h

o
s con-

for

r op-

dinary
of of

on

sh

3850 Charles Schwartz: Nonlinear operators. II

Downloaded¬1
A*5KAK; ~73!

and, following Eq.~22!

A*cuk5Ak~c* ,c!* , ~74!

where the reader should note the two effects of complex conjugation. Furthermore,

~aA1bB!*5a*A*1b*B* ; ~AB!*5A*B* ; ~A/B!*5A* /B* . ~75!

VII. LIE GROUPS AND ALGEBRAS

The usual Lie theory is based upon a set of linear operatorsXi , called the generators of th
group, which are closed under a commutator algebra

@Xi ,Xj #5XiXj2XjXi5Skf i j
kXk ~76!

and the numbersf i j
k , called the structure constants, characterize the particular group. The

elements are exponentials of the generators and they obey the multiplication laws

exp~aXi !exp~bXj !5exp~X8!, ~77!

whereX8 is some linear combination of all theX’s. Furthermore, the commutators obey the Jac
identity ~which says something about the structure constants! and all the equations are invariant
form under a similarity transformation,

Xi→SXiS
21. ~78!

If one tries to extend this mathematics to nonlinear operators, none of the above mac
works in the form given. However, as shown in I, we can get the same mathematical struc
be consistent if we replace the ordinary commutator by the slash commutator in the Lie al

@Xi /Xj #5Xi /Xj2Xj /Xi5Skf i j
kXk , ~79!

and use the generalized exponential functionE(aX5(aiXi) for the group elements. The slas
commutator acts linearly in its arguments if we restrict the coefficientsai to be real, and we would
also restrict the structure constantsf i j

k to be real numbers.~We may be able to extend this t
complex numbers with certain restrictions, such as being of Type 3, on the representation
structed for the operatorsX.!

If the generatorsX are anti-Hermitian operators, as this property was previously defined
nonlinear operators, then their slash commutators are also anti-Hermitian and theE function of
such operators are unitary operators. This conforms fully to the familiar situation for linea
erators.

The slash commutator obeys a Jacobi identity for any nonlinear operators, which the or
commutator fails to do for nonlinear operators. The Second Identity is essential in the pro
this.

Finally, there is the question of invariance under a similarity transformation. The formS(X
1Y)S21 does not work nicely ifS is nonlinear. We have the alternative form of transformati

X→XS5~S/X!S21;

but, while it works nicely on linear expressionsX, this operation does not work nicely on sla
products

XS /YS is not equal to~X/Y!S .
J. Math. Phys., Vol. 38, No. 7, July 1997
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However, thanks to the First and Second Identities, one can show that this does work for th
commutator

@XS /YS#5@X/Y#S . ~80!

Another interesting way to see the relation between ordinary commutators~used for elements
of the group! and slash commutators~used for the elements of the algebra! is the following:

@~11eX!,~11dY!#5ed@X/Y#1higher order ine,d. ~81!

From the discussion of the previous section, we see that it is consistent to speak of any
X’s satisfying a Lie algebra to be of Type 1 or Type 2 or Type 3. And if a set ofX’s satisfy a Lie
algebra with real structure constants, then the set ofX* ’s also satisfy the same algebra.

VIII. REPRESENTATIONS

A representation of a Lie algebra is a set of explicit constructions of how the operatorsXi act
upon a general vectorc5$c1 ,c2 ,...,cn% in a space of dimensionn, consistent with the given
commutator rules. The objective is to see what new nonlinear representations one might
addition to the known matrix representations for linear operators. This is a huge task, which
barely started in this paper. However, some general features can be stated here.~Elsewhere, the
word ‘‘representation’’ is often reserved for a linear, matrix, representation of the group or al
and anything else is called a ‘‘realization.’’!

First is the matter of ‘‘adding’’ representations. Suppose we have one representation, c
operatorsX and they act on vectorsc spanning a space of dimensionn; and we also have anothe
representation, with operatorsY acting on the vectorsf of dimensionm. Now we can form a
larger vector space, of dimensionn1m, as follows:

C5$c,f% ~82!

and the operators act as,

XC5$Xc,0% and YC5$0,Yf%, ~83!

E~aX!C5$E~aX!c,f% and E~bY!C5$c,E~bY!f%. ~84!

Note that each generator effects a change upon its own vector space, and produces ze
acting upon the other vector space. The group elementE(X), on the other hand, acts as the un
operator uponf.

From the above definitions, we can deduce that (X1Y) is the correct generator in the com
posite space and

XY5YX5X/Y5Y/X50, ~85!

E~X!E~Y!5E~Y!E~X!5E~X1Y!5E~X!1E~Y!21. ~86!

This structure has exactly the ‘‘block diagonal’’ form familiar from the discussion of lin
operators and matrices.

Building bigger spaces this way is the easy part. Next is the question of whether any
representation might be transformed into the ‘‘block diagonal’’ form that is transparently c
posite, as described above. If this is possible, then the representation is called reducible; if
is called irreducible.

Two representationsE5E(aX) and E85E(aX8) of the same dimension are equivalent
there exists some invertibleT such thatTE5E8T for every group element designated by the
J. Math. Phys., Vol. 38, No. 7, July 1997
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of group parametersa. In terms of the generators, equivalence meansT/X5X8T, as shown in I.
Thus the representation by the set of generatorsX* may or may not be equivalent to the repr
sentation generated by the setX.

I have nothing to say about Casimir operators because I have not been able to fi
nonlinear generalization of the identity@A,BC#5B@A,C#1@A,B#C which holds for all linear
operators. There is also the question of how Schur’s Lemma might be restated. As for taki
trace of an operator, see Appendix C.

IX. DIRECT PRODUCTS

With linear operators and matrices, there is also the construction of new representati
direct products of known ones. This is very important for physics, since it lets us describe
posite systems in a consistent manner. For general nonlinear representations of a group or
however, this at first seemed to me impossible. However, in an important special case—T
~phase invariant! unitary representations—something may be achieved that mimics the l
situation.

Suppose we have the elements of a Lie algebra represented as follows:

Xcuk5Sk8Rkk8~r!ck8 , ~87!

wherer stands for the set of variablesrpq5cp*cq , which guarantees that this is of Type 2; an
I have suppressed the fact that the matrix of functionsR ~call it an f -matrix for short! depends on
this particular elementX of the algebra. I will also requireRkk8

* 52Rk8k so this will give us a
unitary representation.

Now, we consider another representation of this same Lie algebra, with perhaps a di
dimension. Call the operatorsY, and let it be of this same form, but with some otherf -matrix
Sj j 8(r). The elements of the composite vector space will now be written asC5$Ck j% and the
action of the operatorsX will be taken as follows:

XCuk j5Sk8Rkk8~r1!Ck8 j ~ ‘‘diagonal’’ in j !, ~88!

where we now extend the definition of the arguments

rpq
1 5S jCp j*Cq j . ~89!

The action of the operatorsY will be

YCuk j5S j 8Sj j 8~r2!Ck j8 ~ ‘‘diagonal’’ in k! ~90!

and the arguments ofS are

rpq
2 5SkCkp* Ckq . ~91!

Now we calculate the slash productX/Y acting onC and find the result

X/YCuk j5S j 8k8Sj j 8~r2! Rkk8~r1!Ck8 j 8 . ~92!

Key to this result is the fact that the argumentsr1 are all invariant under the action of 11eY; this
is a result of unitarity. When we calculateY/X we get the identical result.

Thus with this construction of the composite vector space, we have@X/Y#50 and so the
composite operators,X1Y, obey the original Lie algebra. This procedure mimics what is usu
done in the case of linear representations by matrices; and this may be continued to prod
additional subspaces.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Now we must see how this construction relates to the representation of the Lie algebra i
individual vector space. Let me start over again, as above, but now consider the operatorY and the
f -matrixS as belonging to the same vector space asX andR. We must now see how the variable
rpq
1 ~we can drop the superscript now! are changed by the action of (11eY). The result is

rpq→rpq1e~Sp8Spp8
* rr8q1Sq8Sqq8rpq8!. ~93!

If we regardr as a matrix, along withR andS, and use the fact thatS, like R, is anti-Hermitian,
then we can write the result of this calculation succinctly as,

X/YCuk j5Sk8$RS1~Spq@S* ,r#pq ]/]rpq!R%kk8Ck8 j . ~94!

where@, # is the usual commutator.
Thus we can proceed to write the equations of the Lie algebra, e.g.,@X/Y#5Z, etc.; and see

that these are a set of coupled, bilinear differential equations involvingf -matricesR, S, etc., and
the set of variablesrpq . In this form there is no reference to the elements of the composite ve
space; it is just one way of formulating the problem of finding a single representation of th
algebra.

There is a warning here. In the one vector space the variablesrpq , as written after Eq.~87!,
are very redundant. For example,r12r215r11r22, c15c2r11/r12, etc.; but no such relations hol
for the extended definition of Eq.~89!. So, in building the representationf -matrices for the algebra
in one space, we must avoid making use of these identities and then we can use thes
f -matrices for the composite space construction. The one identity which does carry o
rpq*5rqp .

While this construction of the direct product representation looks nice, it is unclear that i
be useful. There is still the physical necessity of being able to separate the variables ass
with disjoint subsystems; and here they seem to be all intertwined in therpq . This subject will
require further study. In Sec. XIII we take another tack on the construction of a direct pro
representation for a particular case.

X. SOME SIMPLE EXAMPLES

Consider a one-dimensional representation

Ac5A~c!, ~95!

where I have taken the representation to be of Type 3—a function ofc but not involvingc* . Let
us see what happens to this when we carry out a transformation

c→c85Tc5T~c!, A→A85~T/A!T21. ~96!

We have

A8c85T/Ac5A~c!
dT~c!

dc
, ~97!

where I have assumed thatT is also of Type 3. If I choose

T~x!5expS lEx

dy/A~y! D , ~98!

then

A8c85lc8 ~99!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and this is now in the form of a linear eigenvalue equation.
Suppose now that the operatorA is of Type 2, in one dimension:

Ac5ca~r!; r5c*c; ~100!

and we look at a transformationT also of Type 2

c85Tc5ct~r!. ~101!

We transform toA85(T/A)T21 and consider

A8c85c8a8~r8!, ~102!

where

r85c8*c85rut~r!u2. ~103!

By calculatingT/Ac, we come to the result:

a8~r8!5a~r!1@a~r!1a~r!* #r~dt~r!/dr!/t~r!. ~104!

Thus givena(r), our task is to find a functiont(r) that will produce any desireda8(r8)—for
example,a8(r8)5l, a constant, which gives us a linear representation of the transformed o
tor A8. This is done by

t~r!5expH ErS duu D @l2a~u!#/@a~u!1a~u!* #J . ~105!

But if a(r) is imaginary, then this solution is nonsense; and this is a very important sp
case:A is anti-Hermitian andE(A) is unitary. Then we are faced with the equation

a8~r8!5a~r! ~106!

along with Eq.~103! relating r8 to r. Let us see the implications of this. The only way f
a8(r8) to be a constant is ifa(r) is already that constant. Thus the linear representation i
equivalence class unto itself, for each value of the eigenvaluel. If a(r) is some nonconstan
function, we can transform it into various other nonconstant functions by the choice oft(r).
Suppose we try to get the next simplest representation, linear plus cubic

a8~r8!5l~11br8!. ~107!

We see that we needl5a(0) and

ut~r!u5$@a~r!/a~0!21#/~br!%1/2. ~108!

The validity of this depends ona(r)/a(0) being greater~or less! than 1 for allr.0 and the real
constantb being correspondingly positive~or negative!.

If we add the requirement that the transformationT be unitary, thenut(r)u51 anda8(r)
5a(r) so each choice ofa(r) is inequivalent to any other choice. Such a restriction, howeve
not generally called for.

Now, suppose we have two operators,A andB, that obey the very simple algebra,

@A/B#50; ~109!
J. Math. Phys., Vol. 38, No. 7, July 1997

5¬May¬2007¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



th

linear

nt Lie

. These
rs, say

w-

ny

3855Charles Schwartz: Nonlinear operators. II

Downloaded¬1
and let us look for one-dimensional representations. If we considerA andB to be of Type 3, then
we get the requirement

B~c!
dA~c!

dc
5A~c!

dB~c!

dc
; ~110!

and the solution of this tells us thatA is a constant timesB, which is a trivial situation.
Alternatively, if we take bothA andB to be of Type 2 and, furthermore, if we take them bo

to be anti-Hermitian, then we find~in a one dimensional vector space! that @A/B#50 without any
further restrictions on either operator. Thus the irreducible unitary representations of a non
Abelian Lie group can be one dimensional with generators of Type 2.

A few examples of one- and two-dimensional nonlinear representations of three-eleme
algebras are worked out in the next two sections.

XI. THE GROUP SL(2,R)

This Lie algebra has three elements,A,B,C, which obey

@A/B#5B; @A/C#52C; @B/C#52A; ~111!

and I shall seek representations of Type 3, which is appropriate also for a real vector space
will not be unitary representations. I start by assuming that we can take one of these operato
A, to be linear and ‘‘diagonal.’’

In one dimension I find

Ac5lc; Bc5lc121/l; Cc52lc111/l. ~112!

In order to avoid singular behavior asc→0, one should setl equal to zero.
In two dimensions, writec5$s,t% and note that the usual linear representation is the follo

ing:

Ac5$s/2,2t/2%; Bc5$t,0%; Cc5$0,s%. ~113!

For the nonlinear representation I keepA the same as just written, but constructB andC as
follows:

Bc5$t f ,~ t2/s!g%; Cc5$~s2/t !g,s f%, ~114!

where f andg are functions ofu5st. This satisfies the first two commutator equations for a
functions f and g. I take the same two functionsf and g in both B and C for the sake of
symmetry. That is, defining the permutation operatorP as

P$s,t%5$t,s%,

the operators of this Lie algebra will be chosen so thatPAP52A, PBP5C andPCP5B.
Finally, from the third commutator equation,@B/C#52A, we get the differential equation

~ f2g!21~ f1g!u~d/du!~ f2g!51. ~115!

One set of solutions is simply,

f ~u!2g~u!51; ~116!

and an alternative set of solutions is given as,
J. Math. Phys., Vol. 38, No. 7, July 1997

5¬May¬2007¬to¬169.229.32.135.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



n.

er to

t. The

e
ators

nto the

f

nique
lf.

r case.
lence

3856 Charles Schwartz: Nonlinear operators. II

Downloaded¬1
~ f1g!5@12~ f2g!2#/@u~d/du!~ f2g!#. ~117!

Either way, we have one arbitrary function in the solution.
Here are a few noteworthy special cases. Ifg50 andf51, we have the linear representatio

If f andg are constants, independent ofu, we have a Type 1 representation. If we takef52g
51/2, we get a pretty answer

Bc5$1/2t,21/2t2/s%;Cc5$21/2s2/t,1/2s%. ~118!

To avoid the apparent singularity ats or t50, we can set

g5st h~st!; f511st h~st!, ~119!

whereh is any function which is finite at the origin. This form of the representation goes ov
the linear one as the norm ofc becomes small. Still another special case is

g50; f5@11const./~st!2#1/2. ~120!

There is now the question whether all these representations are distinct or equivalen
transformationT,

T$s,t%5$s8,t8%5$st~u!,tt~u!%, where u5st, ~121!

is the most general one of Type 3 that leaves the operatorA unchanged in form and furthermor
respects the symmetryP described above. When we calculate how this transforms the oper
B andC, we find that it gives us new functionsf→ f 8 andg→g8 as follows:

f 8~u8!5 f ~u!1~ f ~u!1g~u!!~u/t~u!!
dt~u!

du
, ~122!

g8~u8!5g~u!1~ f ~u!1g~u!!~u/t~u!!
dt~u!

du
~123!

and we also have

u85s8t85ut2~u!. ~124!

The first question is, can all the many representations described above be transformed i
linear one through an appropriate choice of the functiont(u)? From Eqs.~122! and~123! we see
that

f 8~u8!2g8~u8!5 f ~u!2g~u!. ~125!

Thus solutions of the first category,f (u)2g(u)51 ~or 21! are transformed into solution o
that same category, and that includes the linear solution~g50 andf51 or21.! However, it is not
true that all solutions in this category are equivalent to the linear one. For example, the u
solution f52g51/2, which was noted as ‘‘pretty’’ above, is an equivalence class unto itse

Solutions of the second category, wheref (u)2g(u) is different from 1 or21, are also
transformed into solutions of this same category, and these can never include the linea
Many of these are equivalent to one another, but the identification of the various equiva
classes is more complicated.
J. Math. Phys., Vol. 38, No. 7, July 1997
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XII. THE GROUP SU(2)

This Lie algebra has three elements,X,Y,Z, which obey

@X/Y#52Z; @Y/Z#52X; @Z/X#52Y. ~126!

For a Type 3 representation this can be simply related to the SL(2,R) Lie algebra studied above b
introducing the imaginaryi

Z5 iA; X5 i /2~B1C!; Y51/2~B2C!. ~127!

but we know that this will not give us a unitary representation.
We will now seek representations that are of Type 2 and are unitary. We already know th

only result in one dimension is the trivial one, so we will construct a two-dimensional repre
tation withc5$s,t%, wheres and t are complex variables. The standard result in the linear c
is

Zc5$ is/2,2 i t /2%; Xc5$ i t /2,is/2%; Yc5$t/2,2s/2% ~128!

which is i /2 times the Pauli spin matrices.
For the nonlinear representation we shall takeZ linear, as just written, and work with th

‘‘raising’’ and ‘‘lowering’’ operatorsX15X1 iY andX25X2 iY. Noting that sinceZ is linear,
@Z/ iY#5 i @Z/Y#, we find from the two commutators withZ

X1c5$ i t f ,i t ~s* /t* !g%, ~129!

X2c5$ is~ t* /s* !g,is f%, ~130!

where f andg are chosen to be real symmetric functions of the two argumentsr15s* s andr2
5t* t. This form insures thatX, Y andZ are anti-Hermitian operators; and we have imposed
symmetryP from the previous section to get the same functionsf andg in both constructions.
Finally, from the commutator equation@X/Y#52Z, now being very careful abouti ’s in the slash
products, we get the differential equation,

@~ f2g!~11r2~]22]1!!2~r2 /r121!g#~ f1g!51, ~131!

where]15]/]r1 and]25]/]r2 ; and also a second equation gotten from this one by interch
ing the subscripts 1 and 2 that appear explicitly here. The solution is

f51/2~U1U21!; g51/2~U2U21!, ~132!

where

U5@11h~r11r2!/r1r2#
21/2; ~133!

andh is an arbitrary real function of its argument.
We recover the linear solution if we chooseh50. If h is taken to be a constant times th

square of its argument, then this solution is also of Type 1.
Note that taking the complex conjugate of these operators is the same as the mappZ

→ 2 Z, X→2X, Y→1Y; both of these are symmetries of the Lie algebra.
Exploring the equivalence of these solutions, we find an equation for the mapping o

functionh(r ) into h8(r 8), with the following results. One equivalence class ish(r )50, the linear
case. Another set of equivalence classes ish(r )5ar 2, for each value ofa. All other functions
h(r ) that are everywhere positive~or negative! form another equivalence class. There are s
other equivalence classes, involving functionsh(r ) that change sign.
J. Math. Phys., Vol. 38, No. 7, July 1997
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XIII. SINGULARITIES—A COMPOSITE STATE

We have found some genuinely new nonlinear representations of these groups and ob
much further study is needed to see what else may arise from these mathematical constr
that is useful in physical theory.

Most of the new representations found in the previous two sections have singulari
occurring at the origin of one of the variables. One should not be too quick to discard them fo
reason. Perhaps the domain on the vector space may be sensibly constrained to avoid th
larities; or perhaps some other construction will yield useful results.

Here, I want to report on one success: making a composite state out of the direct prod
two vector spaces, each carrying the 2-dimensional nonlinear unitary representation of~2!
reported above.

c5$s,t%; Zc5$ i /2s,2 i /2t%,

~X1 iY!c5$ i t f ,i t ~s* /t* !g%,

f5 f ~s,t !5~U11/U !/2; g5g~s,t !5~U21/U !/2,

and

U5@11h~s* s1t* t !/~s* st* t !#21/2.

The composite vector, made from two of these representations, has four components; and
construct the ‘‘singlet’’ state, as follows:

c5$c1 ,c2 ,c3 ,c4%5$p,q,2q,r %. ~134!

The operators from one space will act on the element pairs~1,2! and~3,4! while the operators from
the other space act on the pairs~1,3! and~2,4!. In the linear situation, one would setp5r50; but
in our representations that appears to involve singularities in the functions 1/U given above. So let
us proceed with caution.

First, when we act withZ5Z11Z2 on thisc, we get

Zc5$ ip,0,0,2 ir % ~135!

and so we will want to take the limit ofp andr→0; but not too quickly. Now apply the raising
operator in one subspace

~X11 iY1!c5$2 iq f ~p,2q!,ir f ~q,r !,iq~p* /q* !g~p,2q!,ir ~q* /r * !g~q,r !% ~136!

and in the other,

~X21 iY2!c5$ iq f ~p,q!,iq~p* /q* !g~p,q!,ir f ~2q,r !,2 ir ~q* /r * !g~2q,r !%. ~137!

Now we add these two vectors and try to get the result$0,0,0,0%. The first and fourth element
cancel exactly, because the functionsf andg depend only on the absolute magnitudes of th
arguments. The second and third elements are the same

ir f ~q,r !1 iq~p* /q* !g~p,q!. ~138!

Now, as we letr→0,

ur u f ~q,r !→1/2@h~q* q!#1/2/uqu1O~r 2!; ~139!
J. Math. Phys., Vol. 38, No. 7, July 1997
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and, as we letp→0,

upug~p,q!→21/2@h~q* q!#1/2/uqu1O~p2!. ~140!

Thus we get the desired result~zero! by taking the limits indicated with the following fixed phas
relation:

phase~p!1phase~r !52 phase~q!. ~141!

Applying X2 iY leads to the same result.
What we have achieved is a ‘‘spin zero’’ state, behaving in the usual manner of a

representation of SU~2!, by a particular construction of the composite of two ‘‘spin 1/2’’ sta
each of which belongs to the novel~and singular! nonlinear representation found above. Note t
this works for any choice of the functionh.

This appears to be a nontrivial result. I cannot make a linear triplet~spin 1! state out of these
two nonlinear representations.

XIV. DISCUSSION

This last result is provocative for elementary particle physics: Could this have something
with building mesons and baryons as composites of two or three confined quarks? A
particle’’ is one that can exist in a universe with many other free particles which can be ign
if they are far away. This is where the usual building of product wave functions or pro
representations in the linear quantum theory is crucial. The new nonlinear group represen
introduced in this paper might be used to describe individual particles, each one alone in it
universe; but they are likely to lead to logical inconsistency when allowed to ‘‘exist’’ with o
free particles. Thus these things, if they exist in our universe, cannot be realized as individu
particles. But perhaps certain composites built out of them can transform according to the
linear transformations of the relevant symmetry group—such as SU~2!, which is the little group
for massive particles in four dimensional space–time.

If such composites of two or more such nonlinear representations are possible, then we
predict a vast number of ‘‘elementary’’ particles to be found in nature. However, it is a matt
dynamics which of them might be stable or metastable. The simple rule for the physical d
position of such composites—apart from any other selection rules—is that no single one sho
allowed out. This means that the stable composites would likely be comprised of either t
three of these basic nonlinear things. This compares to the common picture of quarks. The
lation of the previous section produced something that could describe spin zero mesons.

I have tried to make a composite of three of these things that would behave as a
representation of a ‘‘spin 1/2’’ particle; but I failed.

Obviously, there is much more work to be done, investigating other groups and other n
ear representations.

APPENDIX A: LOGARITHMS

We shall adopt a definition of the generalized logarithm function to be the inverse o
generalized exponential function

L~E~A!!5A ~A1!

from which followsE(L(A))5A.
We know from earlier work that, if@A/B#50, then,E(A)E(B)5E(A1B) and therefore

L~E~A!E~B!!5L~E~A!!1L~E~B!!. ~A2!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Or, equivalently: ifM andN are two commuting operators (MN5NM),

L~MN!5L~M !1L~N!. ~A3!

One can also show that

L~BCB21!5~B/L~C!!B21. ~A4!

We now want to find the series expansion forL(11tA). For ordinary variables or for linea
operators this series is well known; but for nonlinear operatorsA it will be more complicated. First
set

11tA5E~B!511B11/2B/B11/6~B/B!/B1••• ~A5!

and then expandB as a power series int:

B5tB11t2B21t3B31••• ~A6!

and solve term by term. The result is

L~11tA!5tA2t2/2A/A1t3/4$~1/3!~A/A!/A1A/~A/A!%2••• . ~A7!

One should note that the derivative of this series with respect tot does not give a result simply
related to (11tA)21, as would be the case for ordinary functions or linear operators.

This may be an appropriate place to mention that when we write infinite series of oper
their convergence may be limited to a finite domain of some parameter. Look, for example,
solution of the simple time dependent nonlinear equation shown in I~30!. This obviously has a
singularity at some finite value of the timet and therefore the formal infinite series we use
E(tA) has a limited domain of convergence centered aroundt50, which isE51. Thus we expect
the series for the logarithm, discussed above, to have in general a limited domain of conver
~The question of analytic continuation needs further study.!

APPENDIX B: SOME ADDITIONAL POWER SERIES

We previously studied the expansion

V5V~ t !5~12tA!215StnVn~A!, ~B1!

whereV051, V15A and the otherVn are given by the recursion formulas:

Vn51/~n21!SVm /Vn2m with m51, n21. ~B2!

Now considerW(t)5BV(t)5StnWn(B;A). Write this asWV215B and take the time derivative
of this equation. Proceeding as in the earlier study ofV, we find the recursion formulas

nWn5SWm /Vn2m , with m50, n21 and W05B. ~B3!

Thus with the expressionsVn known, one can generate the expressionsWn . In fact, one can see
that eachWn(B;A) can be simply gotten fromVn11(A) by replacing each first~leftmost! A with
B.
@Note that a similar simple result was found for the expressionBE(tA); however, one should
certainly not imagine that this simple result is a general property of power series with non
operators.#

Note thatB, above, can be anything at all; and so this result can be used to construct
expansions in a recursive manner for any integral power.
J. Math. Phys., Vol. 38, No. 7, July 1997
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PK~ t !5~12tA!K5PK11V5StnWn~PK11~ t !;A!. ~B4!

With

PK~ t !5StnPK,n ~B5!

this yields

PK,n5SWm~PK11,n2m ;A!, where m50,n. ~B6!

This formula gives us directly the expansion terms forK522, K523, etc. To get the terms fo
positive K, solve recursively from the right hand side of this last equation, in the orde
increasingn, noting thatW0(B;A)5B.

APPENDIX C: TRACE

In the world of linear operators, taking the trace of a matrix is a common procedure. The
that I have been able to do in trying to extend this to nonlinear operators is the following.
the action of a general nonlinear operatorA on a vectorc in the form introduced in Sec. IX

Acuk5Sk8Rkk8ck8 , ~C1!

whereR, called anf -matrix, is a matrix of functions whose arguments are all the componen
c andc* . Since the original description in Sec. III involvedn functions ~in an n-dimensional
vector space! whereas Eq.~C1! involvesn2 functions, it is apparent that there is much redunda
in how the f -matrix R is expressed; but this is no hindrance here.

Now take another operator, call itB, and represent it as in Eq.~C1! by anotherf -matrix, call
it S. Calculate the result of the slash productA/B, following the general procedure shown in Se
III, and find the result

A/Bcuk5Sk8@Sk9Rkk9Sk9k81d~S!Rkk8#ck8 , ~C2!

where the differential operatord(S), which acts on thef -matrix R, is

d~S!5S j j 8@Sj j 8c j 8]/]c j1Sj j 8*c j 8* ]/]c j* #. ~C3!

This thingd(S) is really the same as Eq.~41!; but with lower cased I emphasize that it is a scala
not a matrix, likeR or S, nor a vector, likec.

We are now ready to give a definition of the trace of a general nonlinear operator.
operatorA is represented, as in Eq.~C1!, by an f -matrix calledR, and we write that relation as
A<.$A%5R, then define

Tr$A%5SkRkk . ~C4!

The result, seen from Eq.~C2! is this statement:

If Tr$A%50, then Tr$A/B%5Tr~$A%$B%!; ~C5!

and from this it follows that:

If Tr$A%5Tr$B%50, then Tr$@A/B#%50. ~C6!

This result~C6! is not as general as the familiar statement, for linear operators represen
ordinary matrices, that the trace of any commutator vanishes. But this result is just enough
J. Math. Phys., Vol. 38, No. 7, July 1997
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useful in the study of Lie algebras. It says that it is consistent for all thef matrix representations
of a Lie algebra to have zero trace—just as in the linear case.~Whether all representations can b
put into this form is another question.!

The condition Tr$A%50 is stronger than is necessary in order to make the second term o
~C2! vanish when taking the trace of$A/B%. For linear operators it will always vanish. Fo
nonlinear operators, if one says that Tr$A% is a constant, that is sufficient. And there are oth
special cases, for example: let Tr$A% depend on only the one variable^cuc&, and furthermore let
the operatorB be anti-Hermitian.

APPENDIX D: THE DERIVATIVE OPERATOR

If the state vector depends upon a continuous variablex, as inc5$ck(x)%, then we might
want to use the derivative operatord/dx, which is itself a linear operator. If we have som
nonlinear operatorA which also acts onc, then in general we would not expectd/dx to commute
with A. ~The derivative of the square of some function is not the same as the square
derivative of that function.! However, it can be readily shown that the slash commuta
@(d/dx)/A#, vanishes, provided that the operatorA is itself independent of the coordinatex and
acts upon theck(x) locally in x. To see that this result is not trivial, note that the opera
d2/dx2 does not have this property.

1C. Schwartz, J. Math. Phys.38, 484–500~1997!.
2I. Bialynicki-Birula and J. Mycielski, Ann. Phys.100, 62–93~1976!.
3S. Weinberg, Ann. Phys.194, 336–386~1989!; see further references given in both of these papers.
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