Homework 3

Math 198: Math for Machine Learning

Due Date:
Name:
Student ID:

Instructions for Submission

Please include your name and student ID at the top of your homework submission. You may submit handwritten solutions or typed ones ($\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ preferred). If you at any point write code to help you solve a problem, please include your code at the end of the homework assignment, and mark which code goes with which problem. Homework is due by start of lecture on the due date; it may be submitted in-person at lecture or by emailing a PDF to both facilitators.

1 Practice with Determinant and Trace

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map that sends $(1,0) \mapsto(2,0)$ and $(0,1) \mapsto(3,4)$. What is $\operatorname{det}(T)$?
2. What is $\operatorname{tr}(T)$?
3. Let U be a proper subspace of a vector space V. Let \mathbf{P} be a projection map onto U. What is $\operatorname{det}(\mathbf{P})$?

2 Proofs about Determinant and Trace

Let \mathbf{A} be an arbitrary square matrix.

1. Prove that, if \mathbf{A} is invertible, then $\operatorname{det}\left(\mathbf{A}^{-1}\right)=\operatorname{det}(\mathbf{A})^{-1}$.
2. Conclude that if $\operatorname{det}(\mathbf{A})=0, \mathbf{A}$ is not invertible.
3. Let \mathbf{B} be an invertible matrix. Prove $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{B A B}{ }^{-\mathbf{1}}\right)$.

3 Computing Eigenvalues and Eigenvectors

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & 1 & -1 \\
\frac{3}{2} & \frac{7}{2} & -\frac{3}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{5}{2}
\end{array}\right]
$$

1. Find $p_{\mathbf{A}}(\lambda)$, the characteristic polynomial of \mathbf{A}.
2. Using $p_{\mathbf{A}}(\lambda)$, compute the eigenvalues of \mathbf{A}.
3. Find the eigenvectors of \mathbf{A}.

4 Proofs about Eigenvalues

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix such that the eigenvectors of \mathbf{A} are a basis for \mathbb{R}^{n}. Additionally, let λ_{i}, $1 \leq i \leq n$ be the eigenvalues of \mathbf{A}.

1. Prove that $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$.
2. Prove that $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$.
