Homework 4

Math 198: Math for Machine Learning

Due Date: March 4
Name:
Student ID:

Instructions for Submission

Please include your name and student ID at the top of your homework submission. You may submit handwritten solutions or typed ones ($\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ preferred). If you at any point write code to help you solve a problem, please include your code at the end of the homework assignment, and mark which code goes with which problem. Homework is due by start of lecture on the due date; it may be submitted in-person at lecture or by emailing a PDF to both facilitators.

1 Projections

Let $\mathbf{P}: V \rightarrow V$ be a (not necessarily orthogonal) projection operator, i.e. $\mathbf{P}^{2}=\mathbf{P}$.

1. Show that all eigenvalues of \mathbf{P} are either 0 or 1 .
2. Show that $\operatorname{tr}(\mathbf{P})=\operatorname{rank}(\mathbf{P})$.
3. Prove that \mathbf{P} is the identity matrix when restricted to its range. That is, for any vector $\mathbf{v} \in \operatorname{range}(\mathbf{P})$, $\mathbf{P v}=\mathbf{v}$.
4. Prove that \mathbf{P} is either not invertible or its own inverse.

2 Using the Spectral Theorem

1. Prove that the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

is normal.
2. Compute the eigenvalues of \mathbf{A}.
3. Compute the eigenvectors of \mathbf{A}.
4. Using the results of (a), (b), and (c), combined with your knowledge of the Spectral Theorem, compute the eigendecomposition of \mathbf{A} (in particular, find the orthogonal matrix \mathbf{Q} and diagonal matrix $\boldsymbol{\Lambda}$ such that $\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$).
5. Compute \mathbf{A}^{20}.

3 PSD Matrices

1. Prove that the two definitions given for positive semi-definite matrices are equivalent. (Hint: use Rayleigh quotients.)
2. Prove that, for any matrix \mathbf{X} and any scalar $\lambda>0, \mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}$ is invertible.
