Homework 5

Math 198: Math for Machine Learning

```
Due Date: March 11
Name:
Student ID:
```


Instructions for Submission

Please include your name and student ID at the top of your homework submission. You may submit handwritten solutions or typed ones ($\mathrm{I} T \mathrm{~T} \mathrm{EX}$ preferred). If you at any point write code to help you solve a problem, please include your code at the end of the homework assignment, and mark which code goes with which problem. Homework is due by start of lecture on the due date; it may be submitted in-person at lecture or by emailing a PDF to both facilitators.

1 Working with Adjoints

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$.
(a) Show that $\operatorname{ker} \mathbf{A}^{\top} \mathbf{A}=\operatorname{ker} \mathbf{A}$.
(b) Deduce that $\operatorname{rank}\left(\mathbf{A}^{\top} \mathbf{A}\right)=\operatorname{rank}(\mathbf{A})$.
(c) Suppose \mathbf{A} is square. Show that \mathbf{A} and \mathbf{A}^{\top} have the same eigenvalues.
(d) Deduce that $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\top}\right)$. (These proofs can be extended to non-square \mathbf{A} by adding rows/columns of all zeroes until \mathbf{A} is square.)

2 SVD

(a) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Let $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ be its SVD. Find the spectral decompositions of $\mathbf{A}^{\top} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\top}$ in terms of $\mathbf{U}, \Sigma, \mathbf{V}$.
(b) Prove: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is PSD, then the spectral decomposition of \mathbf{A} coincides with the SVD of \mathbf{A}.
(c) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, and let $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ be its SVD. If $\mathbf{V}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right), \mathbf{U}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right)$, and $r=\operatorname{rank}(\mathbf{A})$, then let

$$
\begin{aligned}
\mathbf{V}_{r} & =\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right) \\
\mathbf{U}_{r} & =\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)
\end{aligned}
$$

Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ "diagonalize" \mathbf{A} in the following way: For $i=1, \ldots, r$, show that $\mathbf{A} \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}$.
(d) Let

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right)
$$

Compute the SVD of \mathbf{A}.
(e) Let

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right)
$$

Find orthonormal bases for the four fundamental subspaces of \mathbf{A}.

3 PCA

Let

$$
\mathbf{X}=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
-2 & -2 \\
0 & 0 \\
2 & 2
\end{array}\right]
$$

Note that the SVD of \mathbf{X} is

$$
\operatorname{SVD}(\mathbf{X})=\left[\begin{array}{ccccc}
0 & 0.7 & -0.5 & 0 & 0.5 \\
0 & -0.7 & -0.5 & 0 & 0.5 \\
-0.7 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 1 & 0 \\
0.7 & 0 & 0.5 & 0 & 0.5
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0.7 & 0.7 \\
-0.7 & 0.7
\end{array}\right]
$$

Compute the principal components of \mathbf{X}.

