
Note 1: Introduction to Topics

Math 198: Math for Machine Learning

1 Motivation for the Course Structure

While machine learning models offer a plethora of applications to a wide variety of subjects, their formulation
and derivation largely follows the same process. This process is best illustrated by example; we present here
ordinary least-squares (OLS), a simple yet powerful regression model which we will solve next week.

Our example comes from basketball. Suppose we have access to a player’s points, assists, and rebounds for a
variety of games (these datapoints are known as features) and we want to predict their per-game plus/minus
(known as the observations) given these features. We start by choosing a model, and in doing so, clarify
what our assumptions and parameters will be. For this example, ordinary least-squares, we will assume that
plus/minus can be approximated using a weighted sum of our features, plus some noise we cannot (or do not
care to) measure. Furthermore, we will assume that this noise can be represented as a zero-mean normal (as
in the normal distribution) random variable z with some variance σ2. Our goal will be to derive the weights,
so we can use them to predict plus/minus for future games. So, let pi be the points scored in game i, ai be
the assists, ri be the rebounds, zi be the noise, and yi be the plus/minus; then we have

yi = w1pi + w2ai + w3ri + zi

We can rewrite the above equation more compactly, using vectors:

yi = x>i w + zi

where x>i = [pi ai ri] is a vector containing our features and w is a vector containing their respective weights.
Note that our weights are not dependent on the game i; we seek one set of weights which approximates our
entire training set, so that we can use them to predict plus/minus for future games. Suppose we have
observations for n games; we therefore have a series of n equations, with d = 3 unknowns (the weights).
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or more compactly, y = Xw + z.

Observe that p(data = X,y | weights = w) represents the probability that we observed our data given our
weights. We seek the weights which maximize this probability, as these will generalize the best to new data.
That is, we wish to find ŵ which satisfies

ŵ = max
w

p(data = X,y | weights = w)

We will later prove that this is equivalent to finding the weights which minimize the sum of the squared
differences between our predictions and our observations:

ŵ = min
w

n∑
i=1

(x>i w − yi)2 = min
w
||Xw − y||22
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where || · ||2 denotes the `2-norm. (Don’t worry if you aren’t familiar with norms; we will cover later in the
class.) This can then be solved by using vector calculus to find a global minimum or by using a few tricks
of linear algebra (the latter of which we will do next week); in either case, the optimal weights are given by

ŵ = (X>X)−1X>y

So, we have expressed the problem of predicting plus/minus for a basketball player as an optimization problem
over a vector w, representing the weights associated with each feature. The process we have followed here
– choose a model, relate the parameters, features, and observations probabilistically, derive an optimization
problem over the parameters, and solve it – will be the one we follow for most of the other machine learning
applications in this course. To do so, we will first introduce the necessary math for each of these steps.
We have already seen that vectors and matrices are fundamental to the representation of machine learning
models. The first six weeks of the class will thus be dedicated to building up your familiarity with the
theory and applications of linear algebra, a necessary first step in understanding how to express and solve
machine learning problems. In doing so, we will solve the above optimization problem (and others) without
even mentioning calculus. We will then spend three weeks exploring optimization problems through the
lens of vector and matrix calculus, which will allow you to re-solve ordinary least squares and also explore
other methods to attack problems which do not have closed-form solutions. Finally, we will spend three
weeks on probability, allowing you to understand more completely how we associate model parameters with
likelihoods, and represent these parameters as the solution to an optimization problem.
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Applications: Perceptrons

Whereas the previous section explored an important regression problem, in which the observations (y-values)
could take on any value in the real numbers, we will here consider the related problem of classification, in
which we seek to sort our data into classes. For example, while a regression model would be used to predict
tomorrow’s temperature from a variety of features (e.g. today’s temperature, precipitation levels, the date),
a classification model would use these features to predict tomorrow’s weather conditions (i.e. whether it will
be sunny, cloudy, or rainy). Formally, in a regression problem, our observations are scalars y ∈ R, whereas
in a classifaction problem our observations are class labels y ∈ K where K is a set containing all the possible
class labels. (These class labels must be encoded, usually as vectors or scalars, so that we can reason about
them mathematically.)

One of the earliest-developed classification models is the perceptron. Perceptrons are the simplest example
of a binary classifier, meaning they are useful for modeling situations when there are only two class labels
(in this example, A and B) to choose between. They have the advantage of being very simple to train and
use, and the drawback of not being able to converge to a solution in all circumstances.

Now on to the description of the model. Note that there is no closed-form solution for the parameters of
this model; instead, the perceptron algorithm, which is used to learn the parameters, will be presented. Let
x represent our datapoint; like in ordinary least-squares, x is a vector of our features. The specific binary
classifier used in the perceptron model is known as a threshold function, and is defined as:

f(x) =

{
class A if w>x + b > 0

class B if w>x + b ≤ 0

Here, w and b are parameters which we hope to learn in such a way that all the training points are properly
classified. However, before introducing the perceptron algorithm to learn these parameters, it is useful to
turn our attention briefly to the values of x for which w>x + b = 0. If our weight and observation vectors
are two-dimensional (meaning they each have two components), this equation will map out a line in 2D
space, known as the decision boundary. Ideally, the values of w and b will define a decision boundary which
separates all the points in class A from those in class B, as seen on the left of the figure below. (The blue
dots are the members of class A in our training set, the red triangles are the members of class B, and the
green line is one possible decision boundary, although any line which separates them will do.)

Source: http://qingkaikong.blogspot.com

However, consider the situation on the right of this figure. Is it possible to draw a linear decision boundary
which separates the red triangles from the blue dots? As it turns out, the answer is no; with as few as
four points, it can become impossible to draw a linear decison boundary which separates the points into
their respective classes. We refer to data which can be separated by a linear decision boundary as linearly
separable and data which cannot as not linearly separable. As we will see, the perceptron algorithm will
only converge to a solution if the underlying data is linearly separable; if it is not, the algorithm will run
forever, never converging to a solution. This issue is addressed by other methods such as the soft-margin
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support vector machine (a.k.a soft SVM), which simply finds a good-enough linear decision boundary; this
model is out of scope for this class but is covered in CS 189.

In the case of 2D datapoints, an easy method for determining if the data is linearly separable is to try and
draw an oval around all the points of each class; if you cannot draw a convex shape around each class without
the shapes overlapping, the data is not linearly separable. Additionally, note that when using the threshold
function as a binary classifier, the decision boundary will always be linear and one dimension lower than the
data. That is to say, if our data is one-dimensional, our decision boundary will be a point; if our data is
two-dimensional, as in this example, our decision boundary will be a line; if our data is three-dimensional,
our decision boundary will be a plane; and so on. Other methods can be used to learn more complex decision
boundaries, and if time permits we may touch on a few of these at the end of the class. Finally, the choice of
how to assign points which land exactly on the decision boundary is arbitrary; however, if our datapoints are
samples from a continuous probability distribution, the probability of them landing exactly on the boundary
is infinitesimal, and so this is not generally an issue in practice.

We now introduce the perceptron algorithm for learning the decision boundary. The algorithm introduces
one new parameter, the learning rate; this is known as a hyperparameter, as it is set by the user of the
algorithm and not learned by the algorithm like the other parameters. It is as follows:

1. Initialize the weights to zero: w0 = 0, b0 = 0.

2. For each datapoint xj in the training set, perform the following weight update:

(a) Calculate the current output for this datapoint: ytj = (wt)>xj + bt

(b) Update the weights: wt+1
i = wt

i + r(dj − ytj)xji, bt+1 = bt + r(dj − ytj)
Note that wt

i is the i−th element of the weight vector at time t, xji is the i−th element of the
datapoint xj , dj is 1 if xj is in class A and 0 if it is in class B, and r is the learning rate.

3. Repeat step 2 until convergence.

This algorithm is guaranteed to converge if the underlying data is linearly separable. (The proof is beyond
the scope of this class, but if you’re interested, feel free to look it up!) However, if the underlying data is
not linearly separable, then the (dj − ytj) term in the weight update will never be zero for every training
point (as we won’t be able to properly classify every training point), and so the weights will never converge.
Additionally, if the data is linearly separable, the perceptron algorithm will converge as soon as it finds some
working decision boundary; there is no guarantee that this decision boundary will generalize well to new
data. For these reasons, the perceptron algorithm is rarely used in practice; unless we know prior to training
that our underlying data is linearly separable, the algorithm is useless, and so it is preferable to use a model
which does not have this assumption to solve binary classification problems (such as the aforementioned
soft SVM). Nonetheless, the perceptron played an important role in the early history of artificial intelligence
research, and so it has outlived its initial usefulness, being one of the key early examples of a machine
learning model.
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