
Note 2: Review of Basic Linear Algebra

Math 198: Math for Machine Learning

1 Topic: Vector Spaces, Linear Maps, and Matrices

Linear algebra touches nearly every facet of machine learning. Broadly, linear algebra is the study of vector
spaces and the maps between them, linear transformations.

1.1 Vector Spaces and Subspaces

A (real) vector space is a set V that is closed under finite vector addition and scalar multiplication and that
satisfies the following axioms:

(a) Associativity of addition: (x + y) + z = x + (y + z);

(b) Additive identity: There exists an identity element 0 ∈ V such that x + 0 = x for all x ∈ V ;

(c) Additive inverses: For every x ∈ V there exists an element −x such that x + (−x) = 0;

(d) Commutativity of addition1: x + y = y + x;

(e) Associativity of scalar multiplication: a(bx) = (ab)x;

(f) Distributivity: a(x + y) = ax + ay and (a+ b)x = ax + bx;

(g) Multiplicative identity: 1x = x, where 1 ∈ R.

By convention, we refer to the vector space as V and to an element of V as a vector. Some vector spaces
we’ll be working with are

• R and Rd, the spaces of one- or d-dimensional vectors over the real numbers

• Rm×n, the space of m× n matrices with real entries

• Pn, the space of nth-degree polynomials on R with real coefficients.

A subspace of a vector space V is a subset U ⊆ V such that U is a vector space under the same addition
and scalar multiplication operations. Subspaces are easy to characterize: A nonempty subset U ⊆ V is a
subspace iff U contains 0 and is closed under addition and scalar multiplication. No need to check the other
axioms – since they are met in V , they are met in U .

1.2 Basis and Dimension

We’ll quickly run through some key definitions. Let V be a vector space. Given x1, ...,xk ∈ V , a linear com-
bination of x1, ...,xk is any vector of the form a1x1 + ...+ akxk, where ai ∈ R. Note that saying V is closed
under finite addition and scalar multiplication is equivalent to saying that V is closed under taking linear
combinations. Given A ⊆ V , define the span of A, denoted span(A), to be the set of linear combinations
of vectors in A. A nonzero set of vectors {x1, ...,xk} ⊆ V is said to be linearly independent if there do not
exist scalars a1, ..., ak, all nonzero, such that a1x1 + ...+ akxk = 0, i.e. you can’t write any of the vectors as
a nontrivial linear combination of the others. The definition implies that any set of vectors containing 0 is
not linearly independent.

1Note that axioms (a) through (d) say that (V,+) is an abelian group.
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A basis for V is a set B = {x1, ...,xd} ⊆ V such that (i) B is linearly independent and (ii) span(B) = V .
Intuitively, (i) ensures that B doesn’t have too many vectors, and (ii) ensures that B has enough vectors to
write every x ∈ V as a linear combination of vectors in B. Some facts about bases:

• Does every vector space have a basis? Yes, if we assume Zorn’s lemma2 holds.

• Bases are not unique: You can check that {(1, 0), (0, 1)} and {(1, 1), (1,−1)} both form bases for R2.

• Given a subset S ⊂ V , S could fail to be a basis because it has too many vectors (i.e. it’s not linearly
independent), it doesn’t have enough vectors (i.e. it doesn’t span V ), or a combination of the two (too
few and linearly dependent). But these problems are easy to fix: we can always create a basis from S
by adding vectors until S spans V and/or removing vectors until S is linearly independent.

• Most importantly: Every basis of V has the same number of vectors; this number is known as the
dimension of V , denoted dimV . Dimension is unique.

We will work almost exclusively with finite-dimensional vector spaces3. The standard basis for the d-
dimensional vector space Rd is {e1, ..., ed}, where e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), etc. From now on,
assume that every vector space is finite-dimensional unless stated otherwise.

1.3 Inner Products, Orthogonality, and Norms

For a real vector space V , an inner product is a map 〈·, ·〉 : V × V → R satisfying

(a) Linearity in the first coordinate: 〈ax + y, z〉 = a〈x, z〉+ 〈y, z〉

(b) Symmetry: 〈x,y〉 = 〈y,x〉

(c) Positive semi-definite: ∀v ∈ V, 〈v, v〉 ≥ 0; 〈v, v〉 = 0 ⇐⇒ v = 0

By symmetry, the inner product is linear in both coordinates. A vector space equipped with an inner
product is called an inner product space. Note that an inner product induces a norm (size) on V given
by ||x|| =

√
〈x,x〉, which in turn induces a metric (distance) on V given by d(x,y) = ||x − y||. For our

purposes, we will make use of the standard inner product on Rd, the dot product:

〈x,y〉 =

d∑
i=1

xiyi.

Inner products allow us to define the notion of orthogonality. Two vectors x,y are orthogonal if 〈x,y〉 = 0.
This will be important when we cover linear approximation.

Norms allow us to assign a “size” to each vector. In Rd, there is an important family of norms called
the `p-norms (a.k.a. p-norms). For p ∈ Z, p ≥ 1, define

||x||p =

(
d∑

i=1

(xi)
p

) 1
p

.

Note that ||x||2 =
√
〈x,x〉, the norm induced by the dot product.

2Zorn’s lemma ⇐⇒ Axiom of Choice ⇐⇒ every vector space has a basis. When the existence of something is shown with
Zorn’s lemma, it is often difficult to construct an example of it. Can you exhibit a basis for R as a vector space over Q?

3Infinite dimensional vector spaces are usually spaces of functions, e.g. C(R,R), the space of continuous functions from R to R
with pointwise addition and s.m.. Their study is known as functional analysis.
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1.4 Linear Maps and Isomorphism

Let V,W be vector spaces. A function T : V →W is said to be a linear map if

T (ax + y) = aT (x) + T (y)

That is, a linear map preserves vector addition and scalar multiplication.

Associated with T are two important subspaces, the range and the kernel. The range (a.k.a. the im-
age) of T , denoted ran(T ) or Im(T ), is given by ran(T ) = {y ∈ W : y = T (x) for some x ∈ V }. The
kernel of T , denoted ker(T ), is given by ker(T ) = {x ∈ V : T (x) = 0W }. The image of T is a subspace
of W , and the kernel of T is a subspace of V . An important result, the Rank-Nullity theorem, states that
dim(ran(T )) + dim(ker(T )) = dim(V ).

The linearity of linear maps makes them interact nicely with the structure of the vector spaces involved.
An important property of linear maps is that their behavior is determined completely be their action on
a basis for the domain. Let T : V → W be a linear map and B = {x1, ...,xd} a basis for V . Sup-
pose that we know T (xi) for all i = 1, ..., d. Choose some arbitrary vector v ∈ V . Since B is a basis, we
can write v as a linear combination v = a1x1 + ...+adxd. Then, by linearity, T (v) = a1T (x1)+ ...+adT (xd).

How can we say that two arbitrary vector spaces are “the same”? We use the notion of an isomorphism.
The following are equivalent statements about a linear map T : V →W :

(i) T is one-to-one and onto (in other words, T is a bijection)

(ii) T is an isomorphism (a bijective linear map)

(iii) T has an inverse, T−1

(iv) V,W have the same dimension and ker(T ) = 0V (i.e. T is one-to-one)

(v) V,W have the same dimension and ran(T ) = W (i.e. T is onto)

(vi) Applying T to each element of a basis for V results in a basis for W

The vector spaces V and W are isomorphic if there exists an isomorphism between them, in which case we
write V ∼= W . The above equivalences imply that two vector spaces are isomorphic if and only if they share
the same dimension. Thus, every d-dimensional vector space is isomorphic to Rd. Given a d-dimensional
vector space V , how do we exhibit such an isomorphism to Rd? By choosing a basis B = {x1, ...,xd} and
letting T (xi) = ei. If dimV = n and dimW = m, we can always identify V with Rn and W with Rm if
needed.

1.5 Matrices

The key idea of this section is that we can concretely represent linear maps between finite-dimensional vector
spaces as matrices. Given a map T : Rn → Rm, we can form a matrix A ∈ Rm×n such that Ax = T (x) by
setting the ith column of A to be the column vector T (ei) ∈ Rm. In other words,

A =
[
T (e1) . . . T (en)

]
.

To see that this construction works, recall that the action of T is

x = x1e1 + ...+ xnen 7→ T (x) = x1T (e1) + ...+ xnT (en) = Ax.

Note that we necessarily define A with respect to an ordered basis for Rn and Rm. In fact, any time we
write out the elements of a vector or matrix, we do so with respect to some ordered basis. For example, the
i-th column of a matrix A represents the action of that matrix on the i-th basis vector. To limit confusion,
you can always assume that a matrix or vector is being written with respect to the standard bases unless
otherwise noted.
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2 Applications: Projections

2.1 Motivation

Recall from note 1 that the goal of Ordinary Least Squares is to determine a weight vector w such that
Xw ≈ y for our data matrix X and observations y. Suppose that y ∈ range(X) and that X is invertible.4

Then we could solve directly: w = X−1y. Of course, this scenario is rarely, if ever, seen in practice. In
general, we will not be able to come up with an exact solution for the equation Xw = y; instead, we seek
a weight vector w such that Xw is the best approximation to y in the range of X.5 To do so, we will first
introduce the notion of an orthogonal projection.

2.2 Projectors

Suppose we have some vector space V , some subspace W ⊂ V , and some element v ∈ V such that v /∈ W .
Define the orthogonal projection of v in W , vw, to be the vector in W which is closest to v:

vw = arg min
w∈W

||v −w||

How can we go about finding such a vector? The first step is to note that vw is the closest vector in W to
v if and only if v − vw is orthogonal to every w ∈W .

Proof. Fix some arbitrary w ∈ W , and define the function6 fw(t) = ||v − (vw + tw)||2. Then f is the
square of the distance between vw + tw, a vector in W , and v. It should be clear that f is minimized when
t = 0. So, the derivative of fw at t = 0 is 0. To determine the derivative of fw, we first expand it by rewriting
it as an inner product:

fw(t) = 〈(v − vw)− tw, (v − vw)− tw〉

= 〈v − vw,v − vw〉 − 2〈v − vw, tw〉+ 〈tw, tw〉

= ||v − vw||2 − 2t〈v − vw,w〉+ t2||w||2

We then take the derivative with respect to t:

f ′w(t) = −2〈v − vw,w〉+ 2t||w||2

and so
0 = f ′w(0) = −2〈v − vw,w〉

and so v−vw is orthogonal to w. Since our choice of w was arbitrary, we conclude that v−vw is orthogonal
to every vector in W . To prove the converse, note that fw is quadratic in its input and non-negative; so if
v− vw is orthogonal to every vector in W , then f ′w(0) = 0, and so t = 0 must be the global minimum of fw
for all w; so, ||v − (vw + tw)||2 is minimized for t = 0, and thus vw is the closest vector in W to v. �

This proof has an important corollary. We have proven that v − vw is orthogonal to the subspace W .
Let W> denote the set of all vectors in V which are orthogonal to W ; so, v − vw ∈ W>. It turns out that
W> is itself a subspace such that W ⊕W> = V .

Proof. We first show that W> is a subspace of V . Fix v1,v2 ∈W> and a ∈ R. Then, for all w ∈W ,

〈v1 + v2,w〉 = 〈v1,w〉+ 〈v2,w〉 = 0 + 0 = 0

〈av1,w〉 = a〈v1,w〉 = a0 = 0

4Since a matrix A represents a linear map T , A is invertible if T is invertible, and the inverse of A, A−1, represents T−1 with
respect to the same bases as A.

5We will not yet present a probabilistic motivation for our idea of ”closeness”; this will be done in the probability section of
the course.

6Do not confuse the w in vw and the w in the tw term; vw is the orthogonal projection of v in W , and w is some arbitrary
vector in W .
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so v1 + v2 ∈W> and av1 ∈W> and so W> is a subspace. We now show that W ⊕W> = V . To do so, we
show that any vector v ∈ V can be decomposed into the sum of two vectors, one in W , and one in W>. Of
course, v = vw + (v − vw); since vw ∈W and v − vw ∈W>, we have V = W ⊕W>. �

Suppose V has dimension n and W has dimension k. Then by the corollary, W> has dimension n − k.
Furthermore, suppose we have some orthogonal7 basis (likely non-standard) for V , β = {v1,v2, . . . ,vn},
such that {v1,v2, . . . ,vk} is a basis for W . Then {vk+1, . . . ,vn} is a basis for W>.8 Consider some vector

v ∈ V . We can write v =
n∑

i=1

αivi for appropriate coefficients αi. Define vw =
k∑

i=1

αivi. Then

v − vw =

n∑
i=k+1

αivi ∈W>

and so vw =
k∑

i=1

αivi is the orthogonal projection of v in W . So we have reduced the problem of finding the

closest approximation to v to the problem of finding an orthogonal basis for our subspace, W .

2.3 Conclusion

In section 2.1, we concluded that we seek a weight vector w such that Xw is the best approximation to
y in the range of X. Recall from note 1 that X is an n × d matrix, y is an n-dimensional vector, and w
is a d-dimensional vector. Suppose that X is full rank, that is, dim(range(X)) = d. In the language of
section 2.2, we have that V = Rn, W = range(X) ∼= Rd, v = y, and vw = Xw. In the coming weeks, we
will complete this derivation using special classes of matrices, and then confirm that it behaves as we would
expect by developing the class of projection matrices.

7Such a basis is guaranteed to exist. We can turn any basis into an orthonormal basis using Gram-Schmidt Orthonormalization,
which is out of scope for this course because it is computationally horrifying. So, we can take any basis for W , orthonormalize
it, and then extend it to an orthonormal basis for V to obtain the desired basis for any finite vector space.

8The proof for this is trivial, but the fact that our basis for V is orthogonal is essential.
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