
Note 3: Properties of Linear Transformations

Math 198: Math for Machine Learning

1 Determinant & Trace

1.1 Determinant

There are multiple ways to define the determinant of a square matrix A ∈ Rn×n. Geometrically, the de-
terminant of A, det(A), conveys how A changes the volume of the unit cube. If C = {(c1, ..., cn)> ∈ Rn :
ci ∈ [0, 1]} is the unit n-cube in Rn, then |det(A)| is the volume of A(C) = {Ax : x ∈ C}, and the sign of
det(A) is positive if and only if A preserves the orientation of C. You can think of det(A) as the factor by
which the action of A scales volume.

For computational purposes, we will formally define determinant in terms of minors. Let A ∈ Rn×n. We
define the determinant recursively as det(A) =

∑n
j=1(−1)ja1j det(A1j), where Aij ∈ Rn−1×n−1 represents

A with the i’th row and j’th column removed.

For example, let

A =

1 2 3
4 5 6
7 8 9

 .

Then

det(A) = det

1 2 3
4 5 6
7 8 9


= 1 det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)
= 1(5 · 9− 6 · 8)− 2(4 · 9− 6 · 7) + 3(4 · 8− 5 · 7)

= 0.

The determinant of this matrix is 0. If we view this from our geometric standpoint, then we conclude that
A sends the unit n-cube to a set with volume 0 in R3, i.e. a flat parallelogram, a line segment, or 0. This
picture tells us that A flattens space, removing one or more dimensions. Thus, A has a nontrivial kernel
and is not injective. We conclude that A is not an isomorphism. With this picture in hand, it is easy to
see that the converse is true as well. Claim: A is invertible if and only if det(A) 6= 0. This result is an
extremely useful tool that we’ll use when studying eigenvalues.

Now, let us list some properties of the determinant.

(a) det(In) = 1.

(b) det(A>) = det(A).

(c) det(A−1) = det(A)−1.

(d) det(AB) = det(A) det(B) for A,B ∈ Rn×n.1

1The set of n× n matrices with nonzero determinant form a group under matrix multiplication known as the general linear
group of degree n, denoted GL(n). The set of n× n matrices with determinant 1 form a normal subgroup of GL(n) called the
special linear group of degree n, denoted SL(n). These groups are typical examples of Lie groups, smooth manifolds equipped
with a group structure. They are important in physics.
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(e) det(a1, . . . , cx + y, . . . ,an) = cdet(a1, . . . ,x, . . . ,an) + det(a1, . . . ,y, . . . ,an) for column vectors x,y.

(f) If any row or column in A is the zero vector 0 ∈ Rn, then det(A) = 0. Why is this obvious? Because
it would imply that A has nontrivial kernel, and thus is not invertible.

1.2 Trace

The trace of an n× n matrix A, denoted tr(A), is given by tr(A) =
∑n
i=1 aii, the sum of the entries on the

diagonal of A. Here are some properties of the trace that are easy to prove:

(a) Trace is a linear map Rn×n → R: tr(cA + B) = ctr(A) + tr(B).

(b) Trace is preserved under taking the transpose: tr(A) = tr(A>).

(c) Trace is preserved under cyclical permutations – that is, for square matrices A,B,C,D, tr(ABCD) =
tr(BCDA) = tr(CDAB) = tr(DABC). However, trace is not preserved under arbitrary permuta-
tions.

Additionally, trace is invariant under change of coordinates. Mathematically, this means that for any
invertible matrix B ∈ Rn×n, tr(A) = tr(BAB−1).

To see what this means from an intuitive perspective, let A be the matrix representation of a linear map T
with respect to the standard basis. Let S be any other basis for Rn, and let A′ be the matrix representation
of T with respect to S. Then there exists an invertible matrix B such that A′ = BAB−1. The claim here
is that tr(A) = tr(A′). It doesn’t matter with respect to which basis you represent T ; all the corresponding
matrices will have the same trace. Trace is an intrinsic property of a linear map that is the same under
every coordinate system. Thus, we can define the trace of a linear map T : Rn → Rn to be the trace of a
corresponding matrix A with respect to any basis.

Some notation: If A′ = BAB−1 for some invertible B, then we say that A and A′ are similar. Simi-
larity induces an equivalence class on Rn×n.

Trace and rank. If In is the identity matrix, then clearly tr(In) = n. This hints at a relationship between
tr(A) and rank(A). This relationship becomes explicit when A is a (not necessarily orthogonal) projection
matrix, i.e. when A2 = A. Such a matrix is called idempotent. Claim: If A2 = A, then tr(A) = rank(A).
The proof of this fact is easy and relies on eigenvalues, which we define below.

A quick aside about the geometric meaning of trace. Recall that the det(A) encodes how A scales
the volume of the unit n-cube. We can also view trace from this perspective. Consider this excerpt from V.
I. Arnold’s “Ordinary Differential Equations”:

Suppose small changes are made in the edges of a parallelepiped. Then the main contribution to
the change in volume of the parallelepiped is due to the change of each edge in its own direction,
changes in the direction of the other edges making only a second-order contribution to the change
in volume.

The “change of each edge in its own direction” is determined by the values on the main diagonal of A and
is thus encoded in the trace of A.

Formally, this fact is best expressed as a vector ordinary differential equation: y′(t) = Ay(t), where
y : R→ Rn is a vector-valued function. The situation encoded here is as follows: Suppose at time t = 0, we
begin with a unit n-cube. In accordance with the differential equation, observe how the unit cube changes in
time as A acts on it. The solution to this ODE is y(t) = exp(tA)y(0). Thus, the volume of the transformed
unit n-cube at time t is

det(exp(tA)) = 1 + t tr(A) + o(t2).

As we can see, the change in volume from time t = 0 to time t = t0 depends linearly on tr(A). Everything
else is second order and can be ignored.
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2 Eigenvalues & Eigenvectors

Let A ∈ Rm×n. Then λ ∈ R is an eigenvalue of A if Av = λv has a nontrivial solution v ∈ Rn. A
nonzero vector v satisfying Av = λv is called an eigenvector of A corresponding to λ.2 A matrix acts on its
eigenvectors simply by scaling them (potentially by a negative eigenvalue, causing a flip).

Examples.

(a) If A = In, then its only eigenvalue is 1, and every nontrivial vector is a corresponding eigenvector.

(b) If A is the zero matrix, then its only eigenvalue is 0, and every nontrivial vector is a corresponding
eigenvector.

(c) It A is diagonal with diagonal elements (ai), then for each i = 1, . . . , n, we have that ei is an eigenvector
corresponding to eigenvalue ai.

(d) If V = C1(R), the vector space of continuously differentiable real-valued functions on R, and T : V → V
is the differential operator given by f 7→ f ′, then the exponential function t 7→ eλt is an eigenvector of
T corresponding to eigenvalue λ. This is a big reason that the exponential function is so important.
Note that C1 is infinite dimensional and not isomorphic to Rn, so we can’t represent T with a finite
matrix.

Computing eigenvalues and eigenvectors. How do we compute eigenvalues and eigenvectors? We start
with eigenvalues. Let A ∈ Rm×n. Note that

λ is an eigenvalue of A ⇐⇒ there exists nonzero v such that Av = λv

⇐⇒ A− λI has a nontrivial kernel

⇐⇒ A− λI is not invertible

⇐⇒ det(A− λI) = 0.

The function pA(λ) = det(A − λI) is known as the characteristic polynomial of A. Note that it is a poly-
nomial in λ and that its roots are the eigenvalues of A. To compute the eigenvalues of A, simply find the
roots of its characteristic equation.

To find eigenvectors corresponding to the eigenvalues we’ve found, note that

v is an eigenvector of A corresponding to λ ⇐⇒ Av = λv

⇐⇒ (A− λI)v = 0

⇐⇒ v ∈ ker(A− λI).

Thus the set of eigenvectors corresponding to λ is ker(A − λI). It follows that the set of eigenvectors is a
subspace of Rn, which we will denote Eλ and call the eigenspace corresponding to λ.

To sum up, the algorithm for finding eigenvalues and corresponding eigenvectors is as follows:

1. Find pA(λ), find its roots.

2. For each root λ, compute (a basis for) the eigenspace ker(A− λI).

Facts about eigenvalues. Let A ∈ Rn×n.

(a) Trace is the sum of the eigenvalues (with algebraic multiplicity)

(b) Determinant is the product of the eigenvalues (with algebraic multiplicity)

(c) The eigenvalues of Ak are λki , where the λi are eigenvalues of A.

(d) If A−1 exists, then its eigenvalues are 1
λi

.

(e) If A = A>, then all its eigenvalues are real.
2In functional analysis/operator theory, the set of eigenvalues of a linear operator a is called the spectrum of a, hence the

prevalence of the word “spectral” in the study of eigenvalues.
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3 Diagonalization & Spectral Theorem for Real Symmetric Matrices

Why do we care about eigenvectors and eigenvalues of A? Because they reveal key information about the
action of A. Eigen-stuff allows you to understand a linear transformation in terms of the simplest type of
linear action: scaling. Eigenvalues are sometimes called characteristic values because they represent the
fundamental, 1-dimensional action of A.

If A is a square matrix and there exists an basis for Rn consisting of eigenvectors (a.k.a. an eigenbasis),
then we can diagonalize A like so: Let x1, ...,xn be n linearly independent eigenvectors of A corresponding
to λ1, ..., λ2. Note that the λi could be equal to one another. Let

Q =
(
x1 . . . xn

)
and Λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0

. . .

0 . . . 0 0 λn

 .

Then AQ = QΛ, so we can write A = QΛQ−1. This decomposition of A is called an eigendecomposition.
We have decomposed A into three simpler maps: First, we change coordinates via the isomorphism Q−1.
Then, we act via the diagonal matrix Λ, which simply scales each coordinate by its eigenvalue. Finally, we
change back to our original basis via Q.

It turns out that if A> = A, i.e. A is symmetric, then there are always n linearly independent eigen-
vectors with which we can diagonalize A. In fact, the claim is even stronger.

Spectral Theorem for Real Symmetric Matrices. If A ∈ Rn×n and A is symmetric, then there
exists an orthonormal basis for Rn consisting of eigenvectors of A. In this case, A is said to be unitarily
diagonalizable.

We will explore this theorem in the next lecture, but if you want to read ahead, check out this resource:
http://www.math.lsa.umich.edu/~speyer/417/SpectralTheorem.pdf.
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