
Note 4: Special Classes of Matrices

Math 198: Math for Machine Learning

1 Normal Matrices

1.1 Definition

We start our discussion of special classes of matrices with the introduction of the normal matrix. A normal
matrix is any matrix A which commutes with its transpose:

A>A = AA>

This deceptively simple property actually has very important ramifications. Notably, the Spectral Theorem
from Note 3 applies to normal matrices, as we will see after considering a few other classes of matrices. For
now, just remember that a normal matrix commutes with its transpose.

2 Orthogonal (Unitary) Matrices

2.1 Definition

Orthogonal matrices are a subclass of sorts of normal matrices; every orthogonal matrix is normal, but the
converse is not always true. Formally, a orthogonal matrix is any matrix Q whose transpose is its inverse:

Q> = Q−1

Note that this implies that Q is normal:

Q>Q = Q−1Q = I = QQ−1 = QQ>

In complex vector spaces, a matrix whose inverse is equal to its conjugate transpose is known as unitary.
Because the conjugate of a real number is itself, in real vector spaces, unitary matrices are exactly the same
as orthogonal matrices, and we will use the two terms interchangeably.

2.2 Properties

Since Q> = Q−1, we have that det(Q) = 1. We can also show the stronger result that all eigenvalues of Q
are ±1. Let λ be an eigenvalue of Q with corresponding eigenvector v. Then ||Qv||2 = |λ|2||v||2. Rewriting
the left side in terms of the inner product, we get ||Qv||2 = 〈Qv,Qv〉 = v>Q>Qv = v>v = ||v||2. So,
||v||2 = |λ|2||v||2; this implies |λ| = 1, and so λ = ±1. Because all of the eigenvalues of Q are 1, orthogonal
matrices can be though of as matrices which rotate or reflect space rather than scaling it. Also note that
in the process of the previous proof, we stumbled upon the result ||Qv||2 = ||v||2; this is true in general for
orthogonal matrices.

Orthogonal matrices have one hugely important property lurking behind the previous results. Notably,
we wrote that Q>Q = I when proving the normality of orthogonal matrices. But this implies that the dot
product of the i-th and j-th columns of Q is Iij . Formally,

〈Qi,Qj〉 = (Q>Q)ij = Iij = δij

In other words, the columns of Q are pairwise orthonormal. Therefore, they form an orthonormal basis for
Rn.
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3 Diagonal Matrices

3.1 Definition and Properties

A diagonal matrix D is a matrix whose only non-zero elements are on its diagonal. Note that this immediately
implies that D> = D, and so diagonal matrices are normal. Diagonal matrices actually commute with
any other diagonal matrix, and not just themselves. Additionally, it is not much work to see that the
eigenvectors of a diagonal matrix are the basis vectors it is defined with respect to, and the eigenvalues
are the elements along the diagonal. The determinant is therefore the product of the elements along the
diagonal. Additionally, there are extremely simple formulas for the inverse of a diagonal matrix, as well as
the sum and product of two diagonal matrices:a1 0 0

0 a2 0
0 0 a3

−1 =

a−11 0 0
0 a−12 0
0 0 a−13


a1 0 0

0 a2 0
0 0 a3

 +

b1 0 0
0 b2 0
0 0 b3

 =

a1 + b1 0 0
0 a2 + b2 0
0 0 a3 + b3


a1 0 0

0 a2 0
0 0 a3

b1 0 0
0 b2 0
0 0 b3

 =

a1b1 0 0
0 a2b2 0
0 0 a3b3


Therefore, it can be desirable to express matrices in a similar diagonal form when trying to perform com-
putations such as finding the determinant or eigenvalues, taking large powers or inverses, or multiplying
matrices together. The Spectral Theorem will determine exactly when doing so is possible.

4 Spectral Theorem

4.1 Similarity and Diagonalization

Recall that two matrices X,Y are similar if there exists an invertible matrix P such that

X = PYP−1

Similarity is a very important notion because similar matrices share the same rank, determinant, trace,
and eigenvalues. This is because similar matrices represent the same linear operation, just with respect to
different bases. Therefore, if we can establish that a matrix is similar to another, simpler matrix, we can
derive information about the more complex matrix by studying the simpler one.

A matrix Z is diagonalizable if it is similar to a diagonal matrix. That is, there exists an invertible matrix
P and a diagonal matrix D such that

Z = PDP−1

Because Z and D are similar, they share the same eigenvalues; so, the eigenvalues of Z can be read off the
diagonal of D. This in turn implies that the columns of P are eigenvectors of Z; the action of PDP−1

on a vector v is to first change the basis which v is written with respect to to the eigenbasis which spans
the eigenvectors of Z via the change-of-basis matrix P−1; then, each component of P−1v is scaled by the
appropriate eigenvalue in D; and finally, DP−1v is converted back to the original basis by the change-of-
basis matrix P. This has the same effect as just applying the original matrix Z to v. Note that this does not
imply that P is orthogonal, nor does it imply that the eigenvectors of Z span Rn. The situations in which
an arbitrary matrix is diagonalizable are out of scope of this class, and are covered in Math 110; we will
only ever encounter diagonalization in the case of one of these special classes of matrices, via the Spectral
Theorem.
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4.2 Normal Matrices

In the case of normal matrices, the statement of the Spectral Theorem is as follows:

A matrix A is normal if and only if it is unitarily diagonalizable.

A matrix A is unitarily diagonalizable if there exists a unitary (orthogonal) matrix Q and a diagonal matrix
Λ such that

A = QΛQ−1 = QΛQ>

Λ contains the eigenvalues of A on its diagonal, and Q contains the eigenvectors of A as its columns. The
eigenvectors of A therefore form an orthonormal basis for Rn, as they are the columns of an orthogonal
matrix. The form QΛQ−1 is known as the eigendecomposition of A.

The proof of the Spectral Theorem relies on a more basic result, the Schur decomposition, a proof of
which is out of scope for this class but can be found on Wikipedia.1 By the Schur decomposition, for any
square matrix A we can write A = UTU>, where U is unitary and T is upper-triangular, which should be
familiar to anyone who has solved systems of equations with matrices before. (A matrix is upper-triangular
iff it is in row-echelon form, i.e. all entries below the diagonal are 0.) If A is normal, we can write

TT> = U−1AUU−1A>U = U−1AA>U = U−1A>AU = U−1A>UU−1AU = T>T

So if A is normal, T is normal. It suffices now to show that any normal upper-triangular matrix is diagonal.
Let ei denote the i-th standard basis vector. Suppose T is upper-triangular and normal. Then since
TT> = T>T, we have that

〈ei,TT>ei〉 = 〈ei,T
>Tei〉

e>i TT>ei = e>i T>Tei

||T>ei||2 = ||Tei||2

This implies that the i-th row of T has the same magnitude as the i-th column. Consider the first row
and column. These share one element T11, and every other element in the first column is zero (since T is
upper-triangular). Therefore, every other element in the first row must be zero as well. This argument can
then be extended inductively to every row and column of T. So if T is normal and upper-triangular, it is
diagonal. Therefore, any normal matrix has an eigendecomposition. �
The converse of this statement is easy enough to prove – if A = QΛQ>, then

AA> = QΛQ>(QΛQ>)> = QΛQ>QΛ>Q> = QΛΛ>Q>

= QΛ>ΛQ> = QΛ>Q>QΛQ> = (QΛQ>)>QΛQ> = A>A

so A is normal. �

5 Symmetric Matrices

5.1 Definition

A matrix S is symmetric if it is equal to its own transpose; that is, S = S>. This implies that S is normal,
and so we can take an eigendecomposition using the Spectral Theorem.

1https://en.wikipedia.org/wiki/Schur_decomposition
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5.2 Properties

The most important property of symmetric matrices is that all of their eigenvalues are real. Matrices with
only real entries can have complex eigenvalues if their characteristic polynomial has non-real zeros. Consider
the rotation matrix [

1
2 −

√
3
2√

3
2

1
2

]
This matrix has no real eigenvalues, as it is a rotation of all of the 2D plane – there is no real vector in the
2D plane left fixed or stretched by such a rotation. Therefore, if we take its eigendecomposition, we will end
up with a diagonal matrix containing complex numbers. However, if we restrict our eigendecompositions to
symmetric matrices, we are guaranteed that all the eigenvalues of our matrix are real.

To prove that a symmetric matrix has only real eigenvalues, we need to step into the framework of complex
vector spaces for a moment. In a real inner product space, the inner product is endowed with three properties
– linearity in the first coordinate, symmetry, and that it is positive semi-definite. Complex inner product
spaces are mostly the same, except symmetry is replaced with conjugate symmetry, i.e.

〈v,w〉 = 〈w,v〉

In a complex vector space, a matrix which is equal to its conjugate transpose is called Hermitian. Symboli-
cally, this is represented as H∗ = H for a Hermitian matrix H. Symmetric matrices are therefore Hermitian
matrices with only real entries, and any results on Hermitian matrices will apply to symmetric matrices as
well. Let H be a Hermitian matrix on Cn and vi be an eigenvector of H. Then

λi〈vi,vi〉 = 〈Hvi,vi〉 = v∗i H
∗vi = v∗i Hvi = 〈vi,Hvi〉 = λi〈vi,vi〉

This implies λi = λi, which implies λi is real. So, all Hermitian matrices have real eigenvalues, and thus all
symmetric matrices have real eigenvalues.

Since symmetric matrices are normal, we can take the same eigendecomposition S = QΛQ> for symmetric
matrices as we did with normal matrices. However, in the case where S is symmetric, we are guaranteed
that the entries of Λ are all real.

5.3 Rayleigh Quotients

For a symmetric matrix S, the expression x>Sx is known as a quadratic form. The quadratic form of a
symmetric matrix can give us insight into its eigenvalues. Define the Rayleigh quotient as

RS(x) =
x>Sx

x>x

Note that the Rayleigh quotient is scale-invariant (i.e. RS(αx) = RS(x)) and that, for any eigenvector vi of
S, RS(vi) = λi. It turns out that the Rayleigh quotient is bounded by the largest and smallest eigenvalues of
S. Let x be a vector with norm 1; by scale invariance of the Rayleigh quotient, the following argument will
apply to any vector x of arbitrary length. We begin by decomposing S = QΛQ>. We then use the change
of variable y = Qx; because Q is an orthogonal matrix, ||y|| = ||x|| = 1, and this mapping is invertible.
Therefore,

max
||x||=1

RS(x) = max
||y||=1

y>Λy = max
||y||=1

n∑
i=1

λiy
2

Since ||y|| = 1, the vector which maximizes this summation is the one with a 1 in the position corresponding
to the largest eigenvalue and 0 elsewhere. Therefore, max

||x||=1
RS(x) = λmax. An analogous argument can be

used to show that min
||x||=1

RS(x) = λmin. So, in general, we have

λmin ≤ RS(x) ≤ λmax
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6 Positive Semi-Definite (PSD) Matrices

6.1 Definition

A symmetric matrix is positive semi-definite if its eigenvalues are all nonnegative. If its eigenvalues are all
positive, it is positive definite. Equivalently, a matrix A is positive semi-definite if x>Ax ≥ 0 for all x. A
is positive definite if it is positive semi-definite and the only x for which x>Ax = 0 is 0. Note that any
PSD matrix can be made positive-definite by perturbing its diagonal; that is, if A is PSD and ε > 0, then
A + εI is positive-definite. This is particularly useful in light of the fact that positive definite matrices are
invertible, since all their eigenvalues are nonzero.

6.2 Properties

PSD matrices have all the same properties as symmetric matrices and the properties in their definition.
Additionally, PSD matrices always have a unique matrix square root. We can demonstrate this by using
the eigendecomposition. For a diagonal matrix D with non-negative entries, let D

1
2 be the diagonal matrix

whose diagonal contains the square roots of the entries on the original’s diagonal. Then A
1
2 = QΛ

1
2 Q>:

(QΛ
1
2 Q>)2 = QΛ

1
2 Q>QΛ

1
2 Q> = QΛ

1
2 Λ

1
2 Q> = QΛQ> = A

Since the eigenvalues of a PSD matrix are non-negative, Λ
1
2 exists.

Finally, note that for any matrix X, X>X is positive semi-definite – letting v denote any vector in Rn,

v>X>Xv = ||Xv||2 ≥ 0

This in turn implies that for any matrix X and ε > 0, X>X+ εI is positive definite, and therefore invertible.
Additionally, if X is full rank, then it has a trivial nullspace, and so the only vector v for which Xv = 0 is
0. This implies that v>X>Xv is only 0 when v = 0, so if X is full rank, X>X is positive definite.
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7 Application: Finishing the OLS Proof

We previously started the OLS proof, and reduced the problem of finding the closest vector Xw ∈ range(X)
to a vector y ∈ Rn to the problem of finding an orthonormal basis for range(X). We could now develop an
algorithmic method to complete the OLS dervation – we could generate a spanning set for range(X) by taking
the columns of X, remove extraneous elements until we have a basis for range(X), and then orthonormalize
this basis. However, we can improve on this method by instead deriving an expression for Xw directly. To
do so, we will derive an important result regarding matrices and their transposes. We will then confirm that
our derivation is correct using another special class of matrices – projection matrices.

7.1 OLS Proof, Completed

To complete the proof, we first require the following result:

null(X>) = range(X)>

Proof. Let X be a m × n matrix and let x1, . . . ,xn denote its columns (and thus the rows of X>). For all
v ∈ null(X>), X>v = 0. This is true iff each component of X>v is 0, which is the same as saying x>i v = 0
for all i. This is equivalent to stating that any linear combination of the xi is orthogonal to v, i.e.,

〈
n∑

i=1

αixi,v〉 = 0

However,

{
n∑

i=1

αixi | αi ∈ R} = range(X)

So, any v ∈ null(X>) is orthogonal to the entire range of X; additionally, since all our statements were
equivalent, the converse is also true, and any vector orthogonal to the range of X is in the nullspace of X>;
therefore, null(X>) = range(X)>. �

Of what use is this result to us? We know that y −Xw ∈ range(X)>. Using this result, we can now
say that this implies that y −Xw ∈ null(X>). So, X>(y −Xw) = 0. This implies that X>y = X>Xw.
By assumption, X is full rank, so X>X is positive definite and therefore invertible, and so we have that

w = (X>X)−1X>y

which completes the derivation of OLS. The closest vector in range(X) to y is given by

Xw = X(X>X)−1X>y

7.2 Projection Matrices

At the end of the previous application, we had determined that if we had an orthonormal basis for W ,
βW = {v1, . . . ,vk}, which we could extend to an orthonormal basis for V , β = {v1, . . . ,vn}, we could then
write

v =

n∑
i=1

αivi, vW =

k∑
i=1

αivi

In homework, we noted that we could write vW without explicitly keeping track of the αi:

vW =

k∑
i=1

〈v,vi〉vi

We then expressed this sum as a matrix denoted PW, and derived that PW
2 = PW and that PW

> = PW.
These properties can be generalized to special classes of matrices. A projection matrix (or projector) P is
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any matrix equal to its square, i.e., P2 = P. An orthogonal projection matrix (orthogonal projector) is a
symmetric projection matrix. (Note that orthogonal projection matrices are not orthogonal matrices. They
are, in general, not invertible.)

Orthogonal projectors have various important properties. Primarily, because P2 = P, all eigenvalues of
P must be either 0 or 1. This implies (via the Spectral Theorem) that P is similar to a diagonal matrix D
containing only 0s and 1s on the diagonal. This in turn implies that D2 = D; so, any orthogonal projector
is similar to a diagonal orthogonal projector. Additionally, P is an orthogonal projector if and only if there
exists a matrix U such that UU> = P and U>U = I′, where I′ is the identity matrix restricted to range(P).
The proof of this statement is as follows.

Proof. We start with the statement “If P is an orthogonal projector, then there exists a matrix...” Be-
cause P is an orthogonal projector, it is symmetric and can be decomposed by the Spectral Theorem. Let
P = QΛQ> be the eigendecomposition of P. As noted in the previous paragraph, Λ is a diagonal orthogonal
projector. So

P = QΛQ> = QΛ2Q> = QΛΛQ> = QΛΛ>Q> = (QΛ)(QΛ)>

Note that (QΛ)>(QΛ) = ΛQ>QΛ = Λ2 = Λ Since Λ is similar to P, it is a projection matrix with range
P; since it is a diagonal matrix containing only 1s and 0s, it is the identity matrix restricted to range(P),
a.k.a. I′. So, the desired U is QΛ. �
We now prove the converse. Let P = UU>. Then

P> = (UU>)> = UU> = P

and
P2 = (UU>)2 = UU>UU> = UI′U> = P

as desired. �

This proof proves a slightly stronger statement, as well – that an orthogonal projector can be decom-
posed into the form P = UU> where the non-zero columns of U are the eigenvectors of P (and thus an
orthonormal basis for range(P)).

7.3 Checking OLS

In our derivation, we determined that the closest vector in range(X) to y is given by X(X>X)−1X>y.
We can confirm our result by checking that X(X>X)−1X> is, indeed, an orthogonal projector – that is,
Prange(X)y = X(X>X)−1X>y. In the next note, after we have developed the machinery of the Singular

Value Decomposition, we can even determine the matrix U such that X(X>X)−1X> = UU>. But first, we
check the two requirements for an orthogonal projector:

(X(X>X)−1X>)2 = X(X>X)−1X>X(X>X)−1X> = X(X>X)−1IX>

(X(X>X)−1X>)> = X(X>X)−1X>

We can additionally confirm that range(X(X>X)−1X>) = range(X), since range(X>) ⊥ null(X).
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8 Appendix: The OLS Derivation, Condensed

For convenience, we now present the entire OLS derivation, including proofs, from start to finish. We have
an n × d full-rank data matrix X and an n-dimensional observation vector y, and we seek a d-dimensional
weight vector w∗ such that w∗ = arg min

w∈Rd

||y −Xw||.2 We start by proving that w∗ is optimal if and only

if y −Xw∗ ⊥ range(X).

Proof. Fix some arbitrary v ∈ range(X), and define the function fv(t) = ||y − (Xw∗ + tv)||2. Then f
is the square of the distance between Xw∗ + tv, a vector in range(X), and y. It should be clear that f is
minimized when t = 0, as w∗ is assumed to be the optimal solution. So, the derivative of fv at t = 0 is 0.
To determine the derivative of fv, we first expand it by rewriting it as an inner product:

fv(t) = 〈(y −Xw∗)− tv, (y −Xw∗)− tv〉

= 〈y −Xw∗,y −Xw∗〉 − 2〈y −Xw∗, tv〉+ 〈tv, tv〉

= ||y −Xw∗||2 − 2t〈y −Xw∗,v〉+ t2||v||2

We then take the derivative with respect to t:

f ′v(t) = −2〈y −Xw∗,v〉+ 2t||v||2

and so
0 = f ′v(0) = −2〈y −Xw∗,v〉

and so y −Xw∗ is orthogonal to v. Since our choice of v was arbitrary, we conclude that y −Xw∗ is
orthogonal to every vector in range(X). To prove the converse, note that fv is quadratic in its input and
non-negative; so if y −Xw∗ is orthogonal to every vector in range(X), then f ′v(0) = 0, and so t = 0 must
be the global minimum of fv for all v; so, ||y − (Xw∗ + tv)||2 is minimized for t = 0, and thus Xw∗ is the
closest vector in range(X) to y. �

We now prove that null(X>) = range(X)>, and thus that y −Xw∗ ∈ null(X>).

Proof. Let X be a m × n matrix and let x1, . . . ,xn denote its columns (and thus the rows of X>). For all
v ∈ null(X>), X>v = 0. This is true iff each component of X>v is 0, which is the same as saying x>i v = 0
for all i. This is equivalent to stating that any linear combination of the xi is orthogonal to v, i.e.,

〈
n∑

i=1

αixi,v〉 = 0

However,

{
n∑

i=1

αixi | αi ∈ R} = range(X)

So, any v ∈ null(X>) is orthogonal to the entire range of X; additionally, since all our statements were
equivalent, the converse is also true, and any vector orthogonal to the range of X is in the nullspace of X>;
therefore, null(X>) = range(X)>. �

Since y −Xw∗ ∈ null(X>), we have that X>(y −Xw∗) = 0. Therefore, X>y = X>Xw∗. Because X
is full rank, X>X is positive definite, and therefore invertible. So, the optimal weight vector w∗ is given by

w∗ = (X>X)−1X>y

which completes the derivation.

2Note that since “distance from y” induces a total order on vectors in range(X), we are guaranteed that a minimum exists,
and therefore that a solution exists. Additionally, since Xw∗ is unique and X is full rank, w∗ is unique.
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