
Note 5: SVD and PCA

Math 198: Math for Machine Learning

1 Adjoints

How are a matrix A and its transpose A> related? Note that 〈Ax,y〉 = (Ax)>y = x>A>y = 〈x,A>y〉.
So, when taking inner products, it seems that A> represents the action of A on the opposite argument.
In fact, this relationship connects back to the underlying linear map T represented by A. We define the
adjoint of T , T ∗, to be the linear map represented by A>. Equivalently, B(T (v), w) = C(v, T ∗(w)) for any
appropriate nondegenerate bilinear forms B,C. (We will not define this term, as it is very far outside the
scope of the class. Suffice to say that the inner products 〈·, ·〉range(T), 〈·, ·〉range(T∗) can be filled in for B and
C, although inner products are not the only examples of nondegenerate bilinear forms.)1

We now explore how the adjoint T ∗ connects back to A. Observe that any vector of the form Av is a
linear combination of the columns of A. Likewise, any vector of the form A>w is a linear combination of the
rows of A. Therefore, Im(T) = range(A) = col(A), the column space of A; Im(T ∗) = range(A>) = row(A),
the row space of A.

For any linear map T : Rn → Rm (or the associated matrix A ∈ Rm×n), we therefore have the follow-
ing four ”fundamental subspaces” associated with T :

1. Im(T), a.k.a. col(A)

2. ker(T), a.k.a. null(A)

3. Im(T ∗), a.k.a. row(A)

4. ker(T ∗), a.k.a. null(A>).

2 Fundamental Theorem of Linear Algebra and SVD

It turns out these subspaces are related in a way captured by the first part of the Fundamental Theorem of
Linear Algebra:

Theorem (FTLA, Part I)

Let A ∈ Rm×n. Then

(a) Rm = range(A)⊕ ker(A>).

(b) rank(A) + dim ker(A) = n.

1If you want to learn more about adjoints, make sure you can solve all of Q4 on Homework 2, as understanding dual spaces
is essential to understanding adjoints.

1

Proof

Proving (a) amounts to showing that ker(A>) = range(A)⊥. We have

x ∈ ker(A>) ⇐⇒ A>x = 0

⇐⇒ a>i x = 0 for all i = 1, . . . , n (where ai is the i’th column of A)

⇐⇒ v>x = 0 for all v ∈ range(A)

⇐⇒ x ∈ Im(A)⊥.

Part (b) hinges on the fact that rank(A) = rank(A>). Assuming that fact, apply (a) combined with that
dim(U ⊕ V) = dimU + dimV . �

Part (b) is usually known as the Rank-Nullity Theorem.

Singular Value Decomposition

Given A ∈ Rm×n, the FTLA gives us two natural-looking orthogonal decompositions involving the four
fundamental subspaces of A:

(i) Rn = ker(A)⊕ range(A>)

(ii) Rm = ker(A>)⊕ range(A)

To dig deeper, we must examine the matrices A>A ∈ Rn×n and AA> ∈ Rm×m. From an intuitive perspec-
tive, note that (A>A)i,j = a>i aj , where ai is the i’th column of A. Thus, A>A gives some measure of the

similarity between the columns of A. Similarly, AA> measures similarity between the rows of A.

Lemma 1. If A has full column rank (i.e. A has n linearly independent columns), then A>A is in-
vertible.

Proof. Let x ∈ ker(A>A), i.e. A>Ax = 0. Then Ax ∈ ker(A>). By FTLA, Ax ∈ range(A)⊥.
But clearly Ax ∈ range(A) as well, so Ax = 0 by the fact that range(A) ⊥ range(A)⊥. Finally, since A is
full-rank, Ax = 0 implies that x = 0. Thus, A>A is a square matrix with trivial kernel, so it is invertible. �

Lemma 2. ker(A>A) = ker(A), so rank(A>A) = rank(A).

Proof. Exercise.

Lemma 3. A>A is positive semi-definite (PSD).

Proof. Clearly (A>A)> = A>A, so it is symmetric. To show that it is PSD, see that x>A>Ax =
〈Ax,Ax〉 ≥ 0 with equality iff Ax = 0. �

To sum up what we know about A>A:

(i) It preserves the kernel and rank of A

(ii) It is PSD.

If we take A to be invertible (thus encoding a change of basis in Rn), we can consider the transformation
x 7→ Ax. A natural question is: what happens to our standard inner product under the transformation?
If the standard inner product of x,y is 〈x,y〉 = x>y = x>Iny, then the standard inner product of the
transformed vectors Ax,Ay is 〈Ax,Ay〉 = (Ax)>Ay = x>(A>A)y. So A>A can be thought of as
a “scaling factor” by which we can recover the standard inner product in the transformed space under
x 7→ Ax.

2

Existence of SVD

Let’s examine the spectrum2 of A>A. Since A>A is PSD, its eigenvalues are all ≥ 0. Since A>A is
symmetric, it has a spectral decomposition

A>A = VΛV>

More precisely, if A>A has r nonzero eigenvalues (with multiplicity), then write(
Λ′ 0
0 0

)
=

(
V′

V0

)
A>A

(
V′ V0

)
,

where Λ′ is a diagonal matrix with the nonzero eigenvalues of A>A corresponding to eigenvectors in V′ and
the eigenvectors with vanishing eigenvalue are in V0.

Next, define

U′ = AV′Λ′−
1
2 ∈ Rm×r.

Then we have

U′Λ′
1
2 V′> = AV′Λ′−

1
2 Λ′

1
2 V′>

= AV′V′>

= A because V is unitary.

Moreover,

U′>U′ = (AV′Λ′−
1
2)>AV′Λ′−

1
2

= Λ′−
1
2 V′>A>AV′Λ′−

1
2

= Λ′−
1
2 Λ′Λ′−

1
2

= Ir,

so the columns of U′ are orthonormal and can be extended to form an orthonormal basis for Rm. If we
choose U0 containing these added columns, then

U =
(
U′ U0

)
is unitary. Next, we form

Σ =

(
Λ

1
2

0

)
so that Σ has m− r rows of zeros at the bottom and is thus in Rm×n. We arrive at

UΣV> =
(
U′ U0

)(Λ
1
2

0

)(
V′

V0

)
=
(
U′ U0

)(Λ
1
2 V′>

0

)
= U′Λ

1
2 V′>

= A.

The decomposition

A = UΣV>

is known as a singular value decomposition of A, and we have just proven its existence. To sum up,

2A.k.a., the ”eigenstuff”.

3

Theorem (SVD)

Given any matrix A ∈ Rm×n, there exist orthonormal bases {v1, . . . ,vn} of Rn and {u1, . . . ,um} of Rm

such that if V = (v1, . . . ,vn), U = (u1, . . . ,um), and Σ ∈ Rm×n is a rectangular diagonal matrix containing
the square roots of the nonzero eigenvalues of A>A, then

A = UΣV>.

The square roots of the nonzero eigenvalues of A>A are called the singular values of A.3 They are usually
denoted (σi). The corresponding columns of V, i.e. the eigenvectors (vi) of A>A corresponding to the (σi),
are called right-singular vectors of A. The corresponding columns of U are called left-singular vectors of A.
The singular values of A are unique, but the corresponding singular vectors are not.

Note that the columns of U form an eigenbasis of Rm with respect to AA>:

AA> = UΣV>(UΣV>)>

= UΣΣ>U
>

= UΛU> for appropriately sized Λ.

Similarly, we defined V via the spectral decomposition of A>A:

A>A = VΛV> for appropriately sized Λ.

From our discussion about A>A, it follows that the number of singular values of A is equal to rank(A).
The geometric picture for SVD goes as follows:

1. First, via the unitary V>, change coordinates to the eigenbasis for A>A.

2. Via Σ, which has the same rank as A, scale by the σi.

3. Via the unitary U, rotate back.

Note that in Step 1, the actions of the nonsingular vi don’t matter. Why? Because those vi correspond to
eigenvalue 0, so they are in ker(A>A), which we established is the same as ker(A). More thoroughly,

Theorem (FTLA, Part II)

Let A = UΣV> be a singular value decomposition of A, and let rank(A) = r. Then

(i) The first r columns of V, i.e. the right-singular vectors of A, form an orthonormal basis for range(A>).

(ii) The last n− r columns of V form an orthonormal basis for ker(A).

(iii) The first r columns of U, i.e. the left-singular vectors of A, form an orthonormal basis for range(A).

(iv) The last m− r columns of U form an orthonormal basis for ker(A>).

Proof

Easy to fill in the details from the comment directly preceding the theorem combined with FTLA, Part I. �

When passing to the eigenbasis of A>A via V>, we effectively ignore vectors in ker(A), as Σ will kill
them. As for the relevant coordinates, we let the singular vectors transform them, Σ scale them, and then
U bring them back into the image where they belong.

3It’s worth noting that A>A and AA> have the same nonzero eigenvalues.

4

3 Application: Principal Component Analysis (PCA)

Motivation

When fitting a model (e.g. an OLS model) to data, we hope to represent the data in a simpler way. A bas-
ketball player is a complex object; a vector representing (points,assists, rebounds, eye color,birthday)
is not. However, we hope to use only the most relevant features for (i) fast computation and (ii) to build a
more stable model (i.e. reduce the variance of the model). How can we find the features that are important
for predicting whether a player helps his team win (probably points, assists, rebounds), allowing us to
ignore the features that are not (probably eye color, birthday)?

Given a matrix of data X ∈ Rn×d containing n-many d-dimensional data points, PCA allows us to find a
suitable subspace of Rd onto which we can project our data, leaving us with the most relevant features. How
do we decide which features to drop? The idea is that we look at the data and keep only a small number
(< d) of orthogonal directions (perhaps linear combinations of features) that capture the most variance of
the data. Intuitively, the low-variance directions contain less information about the data, so we can throw
them away, improving the model’s performance on new data without hurting predictive accuracy.

Understanding Variance

The first step of PCA is to center the data so that every feature has mean 0 amongst the data points.
We do this because uncentered data would influence our choice of relevant directions (which will be unit-
length arrows starting at 0) in unwanted ways. Thus, we first center X by subtracting the mean vector
Ex = 1

n

∑n
i=1 xi from each row.

Next, we hope to find a unit vector v ∈ Rd that will capture the most “variance in the data.” What
does this mean? We will ultimately project every data point xi onto v by taking x>i v, so we care about the
variance of this quantity as i ranges through the data from 1 to n.

A brief aside on variance in probabilistic terms: Given a random variable X with EX = 0, we have the
following version of Chebyshev’s inequality:

P(|X| ≥ a) ≤ Var(X)

a2
.

This inequality tells us that Var(X) is a measure of how likely X is to vary from its mean. Variance conveys
information about the tail probabilities of X; it shows us how likely X is to take a highly unexpected value.

In our case, highly unexpected values correspond to new information. That is why we want v that maximizes
the variance of the x>i v: it would mean that span(v) is the 1-dimensional subspace of Rd containing the
most information about the data.

Finding the First Principal Component

We compute the sample variance of this projection amongst our n-many data points:

sample variance =
1

n

n∑
i=1

(x>i v)2 =
1

n
||Xv||2 =

1

n
v>X>Xv.

Thus, if we want to find the unit vector v maximizing the variance, we’ve walked into a constrained opti-
mization problem:

max
v∈Rd

v>X>Xv subject to ||v|| = 1

To solve this optimization problem, recall that for symmetric A ∈ Rd×d, for any v ∈ Rd with ||v|| = 1,

λmin(A) ≤ v>Av ≤ λmax(A)

5

where for both bounds, equality holds iff v is a corresponding eigenvector. This immediately yields that the
first loading vector v = v1 is a unit eigenvector corresponding to the maximal eigenvalue of X>X.

Finding More Principal Components

We often want more than one principal component. Given k−1 principal components, the problem of finding
the k’th amounts to another constrained optimization problem:

max
v∈Rd

v>X>Xv subject to ||v|| = 1

v>vi = 0 for i = 1, . . . , k − 1.

The k’th loading vector vk is given by the following result:

Theorem

The solution to the above optimization problem is v = a unit eigenvector corresponding to the k’th largest
eigenvalue of X>X.

Proof

By induction on k. See source at end of note. �

All this tells us that we can compute the first k loading vectors by computing the SVD of X and tak-
ing the first k right-singular vectors.

Projecting onto the PCA Coordinate System

How do we project the data onto the subspace of Rd spanned by v1, . . . ,vk? For each data point xi, we
want to map

xi 7→ Projspan{v1,...,vk}(xi) =

k∑
j=1

(x>i vj)vj .

Computationally, it’s easier to handle all the xi at once through matrix multiplication. Let Vk = (v1, . . . ,vk).

Then the new data matrix X̃k ∈ Rn×k is given by

X̃k = XVkV>k .

The rows of X̃k are exactly what we wanted: the original data points projected onto the subspace spanned
by v1, . . . ,vk.

Geometric View of PCA

OLS could be viewed intuitively as finding the “line of best fit.” In it, we minimize the vertical distance
between the data points and the fitted line. Similarly, we can view PCA as finding the “subspace of best
fit” insofar as the k-dimensional subspace we project onto minimizes perpendicular distance between it and
the original data points in Rd.

To show this, we need to show that our first loading vector minimizes the reconstruction error

n∑
i=1

||xi − Pv(xi)||2

where Pv(xi) = (x>i v)v represents the projection of xi onto the span of v.

By the Pythagorean theorem, we have that

||xi − Pv(xi)||2 + ||Pv(xi)||2 = ||xi||2

6

so that

n∑
i=1

||xi − Pv(xi)||2 =

n∑
i=1

||xi||2 − ||Pv(xi)||2

=

n∑
i=1

||xi||2 −
n∑

i=1

(x>i v)2.

The first term is constant in v, so minimizing reconstruction error amounts to minimizing
∑n

i=1(x>i v)2,
which is precisely our objective in PCA.

Low-Rank Approximation

Let || · || be any unitary-invariant norm on Rn×d. A family of such norms is the collection of induced `p-norms
for matrices:

||A||p = sup
x 6=0

||Ax||p
||x||p

of which the operator (p = 1) and the spectral (p = 2) norms are examples.

Take a matrix X ∈ Rn×d, where Rn×d is equipped with our unitary-invariant norm || · ||. If we seek
the best rank-k approximation to X with respect to || · ||, then PCA comes in handy:

Theorem (Eckart-Young-Mirsky)

Our PCA solution X̃k is the best rank-k approximation to X with respect to || · || in the sense that for any
rank-r (r ≤ k) matrix Y ∈ Rn×d,

||X− X̃k|| ≤ ||X−Y||.

This theorem tells us that the process of projecting our data onto a subspace via PCA amounts to finding
the best rank-k approximation of X.

Sources

A more thorough treatment of PCA can be found here: https://www.eecs189.org/static/notes/n10.pdf

7

https://www.eecs189.org/static/notes/n10.pdf

	Adjoints
	Fundamental Theorem of Linear Algebra and SVD
	Application: Principal Component Analysis (PCA)

