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We used the motion aftereffect (MAE) to psychophysically characterize tuning of motion
perception in the human visual system. The function relatingMAE strength and the range of
directions present in the adapter stimulus provides information regarding the width of
direction tuning of motion adaptation. We compared the directional anisotropy in MAE
tuning width to the well-known oblique effect in motion direction discrimination. In
agreement with previous research, we found that subjects had lower motion direction
discrimination thresholds for cardinal compared to oblique directions. For each subject, we
also estimated MAE tuning width for a cardinal and an oblique direction by measuring the
strength of the MAE for adapter stimuli containing different directional variances. The MAE
tuning width was smaller for the cardinal direction, suggesting a fundamental similarity
betweenmotion direction discrimination and tuning of the MAE.We constructed amodel of
encoding of motion stimuli by V1 and MT and decoding of stimulus information from the
cells in area MT. The model includes an anisotropy in the representation of different
directions of motion in area V1. As a consequence of the connections implemented in the
model, this anisotropy propagates to cells in MT. Model simulations predicted an oblique
effect for both direction discrimination thresholds and MAE tuning width, consistent with
our experimental results. Themodel also concurs with a recent report that themagnitude of
the oblique effect for direction discrimination is inversely proportional to the directional
variance of the stimulus. The agreement betweenmodel predictions and empirical data was
obtained only when the model employed a maximum likelihood decoding algorithm.
Alternative decoding mechanisms such as vector averaging and winner-take-all failed to
account for the psychophysical results.
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1. Introduction

Performance in visual tasks is often asymmetric, depending
on the location, orientation, and/or motion direction of visual

stimuli. In some cases, these differences in performance may
stem from asymmetries that exist in the natural environment
and can provide insight into the developmental origins of
perceptual and behavioral asymmetries (Dakin et al., 2005). In
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addition, these asymmetries may be used to illuminate the
mechanisms of neural encoding and decoding underlying the
performance of visual tasks. In this work, we have used
anisotropies in motion perception to investigate encoding and
decoding of motion stimuli by the human visual system.

Thresholds for perceptual tasks performed on moving
stimuli or on oriented stimuli are often lower for stimuli
with orientation or direction of motion that is parallel to the
cardinal axes (up/down, left/right) than for stimuli oriented or
moving along the oblique directions (the off-cardinal diag-
onals), a phenomenon referred to as the oblique effect
(Appelle, 1972). This behavioral anisotropy probably stems
from a more robust representation of cardinal orientations in
the visual system. Furmanski and Engel (2000) and Furmanski
et al. (2004) showed that the oblique effect in detection of low-
contrast gratings (lower detection contrast threshold for
cardinal than for oblique orientations) was correlated with a
difference in the magnitude of primary visual cortical fMRI
responses to presentation of cardinal and oblique gratings. In
addition, in a large sample of cat primary visual cortical
neurons, randomly sampled in many different experiments,
there were more cells preferring cardinal than cells preferring
oblique orientations (Li et al., 2003). In motion perception,
thresholds for discriminating two similar motions of direction
are higher when the stimuli are centered at oblique directions
compared to cardinal directions (Ball and Sekuler, 1982; Dakin
et al., 2005; Gros et al., 1998). By analogywith the oblique effect
for stimulus orientation, we assume that the oblique effect for
motion perception is also based on an anisotropy in the
representations of different motion directions in the visual
system. A significant proportion of cells in primary visual
cortex is not only orientation-selective but also direction-
selective (De Valois et al., 1982, 2000; Hubel and Wiesel, 1959;
Peterson et al., 2004). The preferred direction and preferred
orientation are always approximately orthogonal in macaque
V1 cells, based on responses to moving bar stimuli (Albright,
1984). 2D motion direction information may not always be
available to the cell, due to the aperture problem (Horn, 1986).
However, when 2D motion direction information is available
to V1 neurons, preferred direction is independent of stimulus
orientation (Pack et al., 2003). Therefore, it is reasonable to
assume that there are more cells in V1 that show a preference
for cardinal motion directions than cells that prefer oblique
directions. Moreover, the average orientation tuning width of
primary visual cortical neurons tuned to cardinal orientations
was smaller than the average tuning width of those tuned to
oblique orientations (Li et al., 2003). Therefore, the average
tuning width of motion selectivity is likely to be smaller for
cells representing the cardinal directions compared to cells
preferring oblique motions, though this has not yet been
tested experimentally in primary visual cortex.

We used two tasks to characterize the oblique effect in
motion perception. The first, a motion direction discrimina-
tion task, exhibited an oblique effect in direction discrimina-
tion threshold and was used to identify the cardinal direction
associated with lowest discrimination threshold and the
oblique direction associated with highest threshold in each
of our subjects.We thenmeasured the tuning width ofmotion
adaptation for these two directions. Estimates of the tuning
width were obtained by measuring the strength of adaptation

(magnitude of the motion aftereffect, or MAE) following
prolonged viewing of a field of coherently moving dots in
one of the two directions. Previous work has shown that the
magnitude of the MAE for random dot kinetogram (RDK)
adapter stimuli was greater when the adapter stimulus
included a moderate range of directions compared to a single
direction of motion (Hiris and Blake, 1992). Thus, the relation-
ship between MAE strength and the range of directions in the
adapter stimulus allows estimation of the width of direction
tuning of motion perception.

In our experiments, the RDK adapting stimuli were
generated by assigning a direction to each dot from a
distribution of directions centered on either a cardinal or
oblique direction. The variance of this distribution determines
the directional variance of the stimulus. Our results show that
like motion direction discrimination performance, the tuning
width of motion adaptation also exhibited an oblique effect:
direction tuning was sharper for cardinal adapter stimuli than
for oblique stimuli.

We constructed a computational model of encoding and
decoding of motion information by cells in areas V1 and MT
that accounts for the observed oblique effects in motion
direction discrimination and tuning width of motion adapta-
tion. The model contains a set of V1 units with feedforward
connections to a set of MT units. The V1 units are anisotropic
in their representation of motion: V1 cells representing
cardinal directions are more numerous, and their directional
tuning widths are narrower than the tuning widths of V1 cells
representing oblique directions. The tuning properties of MT
cells are then inherited through feedforward projections from
V1 cells.

Information about stimulus motion direction is then
decoded from the activity in the entire population of MT
cells (as in Pouget et al., 2000). The decoding method is based
on a maximum likelihood procedure (Jazayeri and Movshon,
2006). Our model quantitatively accounts for the observed
psychophysical results, generating oblique effects for motion
discrimination and formotion adaptation tuningwidth. It also
agrees with previous findings that the oblique effect for
motion discrimination is only present for stimuli with low
directional variance (Dakin et al., 2005).

Our modeling results demonstrate that oblique effects in
motion perception could arise from a combination of an
anisotropy in the encoding of the stimulus by the visual
system and a decoding mechanism that employs a statisti-
cally optimal strategy to read out this information. This
suggests that complex perceptual phenomena such as the
oblique effect should be understood as a consequence of
specific encoding and representation schemes as well as
specific decoding strategies employed by the brain.

2. Results

2.1. The oblique effect in motion direction discrimination

To compare perceptual abilities for different directions of
motion, we employed a motion direction discrimination task.
Subjects viewed an annulus centered at the fixation point and
containing a random dot kinetogram (RDK). For each trial, two
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RDKs were presented in succession. Subjects were required to
press a button to indicate whether the RDKs were moving in
the same or different directions (Fig. 1A). For half of the trials,
the RDKs were moving in the same direction in both intervals.
For the other half of the trials, the motions were different,
separated by a small angle α. The magnitude of α was
adaptively adjusted based on a psychophysical staircase and
according to the subject's previous performance. Discrimina-
tion thresholds were obtained for each subject for eight
different directions. We found a robust and reliable oblique
effect in the direction discrimination task: the mean thresh-
old (~80% performance) for direction discrimination was
12.4±9.0° for cardinal directions and 17.9±10.9° for oblique
directions (Fig. 2). This difference was statistically significant
(within-subject paired t-test, n=16, p<0.001) and replicates

previous findings of a robust oblique effect in similar tasks
(Ball and Sekuler, 1982; Gros et al., 1998).

2.2. The oblique effect in direction tuning width of motion
adaptation

In order to characterize width of motion direction tuning in
the visual system, we used the motion aftereffect (MAE; also
known as the ‘waterfall effect’), whereby prolonged viewing of
a moving adapter stimulus causes subjects to have a
perceptual bias towards perceiving motion in the opposite
direction of the adapting stimulus (Anstis et al., 1998). We
manipulated the directional variance of the adapting RDK by
varying the standard deviation of the distribution from which
dot directions were assigned (Fig. 1B).

Initially, the adapting stimuli were presented at 100%
coherence for 40 s. Each trial began with 4 s of top-up
adaptation, followed by a second probe RDK with motion
either in the adapting direction or in the opposite direction.
Subjects discriminated the direction of motion in this probe
stimulus (Fig. 1C). We insured that the discrimination was
made at threshold by adjusting the proportion of coherently
moving dots in the probe stimulus based on a psychophysical
staircase.

When coherence of the probe stimulus was very low, it
appeared to be moving in the opposite direction from the
direction of the adapting stimulus due to the MAE. However,
when the coherence of the physical motion present in the
stimulus was increased, the MAE was eventually overcome.
The proportion of coherent dots in the post-adaptation probe
stimulus was adjusted for each trial according to the subject's
previous responses, and the threshold (~70% of responses

Fig. 1 – Task design. A: Motion direction discrimination task.
Subjects observed motion in a standard direction, followed
by either motion in the standard direction or motion in a
direction similar but not identical to the standard direction.
During the intertrial interval, subjects reported whether the
two stimuli were moving in the same direction or not. B:
Motion aftereffect task. Adapting RDK stimuli spanned a
range of variances of motion directions. The directional
variance was controlled by drawing the motion direction of
each dot from Gaussian distributions with different widths
(standard deviations). C: Motion aftereffect task. Subjects
were initially presented with 40 s of an adapting stimulus.
Then, at the beginning of each trial, there was an additional
period of top-up adaptation. Subjects then made a direction
judgment on a probe RDK with low motion coherence. The
strength of adaptation was determined by measuring the
amount of coherence that was needed in order to counteract
the MAE.

Fig. 2 – The oblique effect in motion direction discrimination.
Average thresholds (±1 SEM) from the direction
discrimination task (Fig. 1A) are presented. There was a
robust oblique effect–mean thresholds for cardinal directions
were always lower than mean thresholds for oblique
directions. Numbers surrounding the plot represent angular
directions of motion in the standard directions; numbers
within the plot represent thresholds, expressed as the
angular difference between two stimuli at threshold
(in units of degrees).
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corresponding to perception of movement in the same
direction as the adapting stimulus, in units of percent
coherent dots) served as a measure of the strength of motion
adaptation (Blake and Hiris, 1993). For each subject, thresholds
were computed for eight different adapting stimuli that
spanned a range of directional variances. Additionally, each
subject performed the task for two different adapter direc-
tions: the cardinal direction in which motion direction
discrimination performance was best and the oblique direc-
tion in which motion direction discrimination performance
was worst. In all but two subjects, this pair of directions
corresponded to the directions in which the subjects achieved
their best and worst direction discrimination performance
across all eight directions.

When the standard deviation of the adapting stimulus was
zero (all dots in the adapting RDK moved in the same
direction), there was no significant difference in motion
adaptation magnitude for cardinal and oblique directions
(Fig. 3A). However, when the standard deviation of the

adapting stimulus was 22.5 or 45 degrees, a significant oblique
effect was observed, with the oblique adapters resulting in
stronger adaptation than cardinal adapters (p<0.05). When
the standard deviation was very large (90°), substantially less
adaptation was observed for either adapting direction. This
MAE oblique effect can be represented as the difference
between oblique and cardinal MAE strength (Fig. 3B). These
results indicate that the ‘optimal width’ for adaptation differs
between the oblique and cardinal directions. For oblique
directions, there was still significant adaptation even for
adapting stimuli with widths of 22.5 and 45°, while much
less adaptation was observed for these widths for cardinal
adapters.

2.3. A model of encoding and decoding of motion direction
in V1 and MT

To better understand the mechanisms underlying these
psychophysical results, we constructed a computational
model of encoding of motion stimuli in V1 and MT. The
model contains two layers of units, one representing primary
visual cortex (area V1), and the other representing area MT.
There is a direct feedforward projection from the V1 layer to
the MT layer. Each V1 unit has a profile of direction preference
described by a circular Gaussian (a von Mises function, see
Experimental procedures). The profile of synaptic inputs to
each MT unit from a group of V1 units is also described by a
circular Gaussian. The model contains an anisotropy in the
numbers of V1 units representing different directions and in
the widths of tuning of units representing different directions
(Li et al., 2003). MT units inherit this anisotropy through the
synaptic connections between V1 and MT. Specifically, the
width of tuning is relatively large in MT units tuned to oblique
directions and relatively small in MT units tuned to cardinal
directions. The model also applies untuned divisive normal-
ization to the output of the units in the V1 layer: the output of
each unit is passed through a static nonlinearity and then
normalized by the summed activity of all the V1 units before
being passed as input to the MT layer.

The activity in the population of MT units is decoded using
statistically optimal decoding based on amaximum likelihood
algorithm (Jazayeri and Movshon, 2006). This scheme takes
into account the activity of all the cells in the MT layer and
selects the direction of motion most likely to be present in the
stimulus, given the activity of all the MT units, their tuning
widths, and their preferred directions (see Experimental
procedures).

2.3.1. Modeling of motion direction discrimination
Direction discrimination relies on a comparison of the
representation of motion direction in the two consecutive
RDK presentations. Chance-level performance occurs when
the difference between the two directions is below the
resolution of the representation. In the task studied here,
chance-level performance was 50%, as the task was a two
alternative forced choice task (the subjects indicated whether
the two stimuli had the same direction or different direc-
tions). In our computational model, we simulated motion
direction discrimination by presenting the same stimulus
twice. Because the spike rates produced by our model were

Fig. 3 – The oblique effect for motion adaptation. A: Average
thresholds (±1 SEM) for the MAE task are presented. The
threshold in this task corresponded to the strength of the
MAE for a given combination of adapter direction and
standard deviation of motion directions. Solid line: oblique
directions, dashed line: cardinal directions. B: Average
difference (±1 SEM) between MAE strength for oblique and
cardinal directions. C: Model simulations of the MAE task
provide an excellent fit of the experimental data. Average
model thresholds (±1 standard deviation for 10 repetitions of
the simulation) are presented. D: The differences between
the conditions in the model match the experimental data
shown in panel B.
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stochastically drawn from Poisson distributions, the direction
deemed to be the most likely by the decoding mechanismwas
different in two subsequent presentations of the same exact
stimulus. The difference between the directions estimated to
be the most likely by the decoding mechanism, Δθ, is a
measure of the fidelity of the representation of motion
direction. When this procedure was repeated multiple
times, a distribution of the estimated Δθ values was obtained.
In order to fulfill the 50% chance performance level require-
ment, any Δθ smaller than the median of this distribution was
considered to be a trial for which the subject's response would
be that there was no difference between the two directions of
motion. Hence, we took the median of this distribution to be
an estimate of the direction discrimination threshold of the
model.

For stimuli with no directional variance, there was a
reliable difference in the thresholds predicted by the model
for stimuli with oblique and cardinal directions (Fig. 4A),
replicating our psychophysical findings (Fig. 2). However, as
the directional variance of the stimuli increased, this oblique
effect diminished, until at a standard deviation of 22.5–45°, it
disappeared. This pattern is strikingly similar to results
reported by Dakin et al. (2005). In this study, human observers
were presented with oblique and cardinal motion patterns
containing varying amounts of added directional noise
(variance in the direction of motion assigned to each element

in the pattern of moving stimuli). Consistent with our
modeling results, Dakin et al. also observed an oblique effect
in motion direction discrimination for low but not high levels
of directional noise (Fig. 4B).

2.3.2. Modeling of the MAE oblique effect
We simulated themotion adaptation experiment in themodel
by defining the strength of the MAE as the relative likelihood
of the two antagonistic directions in the probe stimulus (the
direction of the adapting stimulus and the opposite direction),
given the profile of activity in the units (Gold and Shadlen,
2001).

This readout of the strength of the MAE from the
population activity of the MT units produced an excellent fit
to our psychophysical results from themotion adaptation task
(Fig. 3C). In particular, the model captured the substantial
difference in adaptation strength between cardinal and
oblique directions for intermediate adapter standard devia-
tions and the minimal oblique effect for small and 90°
standard deviations (Fig. 3D).

2.3.3. Comparison between different decoding mechanisms:
Decoding of the representations of stimuli in the model was
performed by a maximum likelihood mechanism. There is
psychophysical evidence that this is the mechanism under-
lying decoding of motion direction in humans (Jazayeri and
Movshon, 2007). However, other mechanisms have also been
suggested for decoding of motion direction in area MT,
including vector averaging (Zohary et al., 1996; Nichols and
Newsome, 2002) and winner-take-all (Nichols and Newsome,
2002; Salzman and Newsome, 1994; Zohary et al., 1996). We
compared the abilities of these alternative decoding mechan-
isms to account for the psychophysical results. The encoding
portion of the model was the same for all three decoding
mechanisms, including the V1 directional anisotropy and the
connectivity between V1 andMT. In vector averaging, eachMT
cell generates a vector pointing in the direction of that cell's
preferred direction and proportional in length to that cell's
firing rate. The direction of the average of these individual
vectors is considered to be the direction coded by the
population. The strength of the MAE was computed from the
relative length of the component of the population vector for
the direction opposite to the adapting direction.

The other decoding mechanism we considered is “winner-
take-all”. Here, the output of the model simply corresponds to
the direction of motion preferred by the most active MT unit.
The strength of the MAE was computed from the ratio
between the activity in the unit which prefers the adapting
direction and the activity in the unit which prefers the
direction opposite to the adapting direction. Fig. 5 shows a
comparison of the experimental results and the predictions of
models based on the three decoding mechanisms. The
maximum likelihood model best accounted for the width of
tuning of motion adaptation as measured psychophysically
(Fig. 5A). In contrast, the vector averaging model did not
predict any difference in the MAE strength between oblique
and cardinal directions except for an adapter standard
deviation of 90° (Fig. 5B). Also, the winner-take-all model
predicted MAE strength differences only for adapting stimuli
with a standard deviation of 45° or greater (Fig. 5C). The failure

Fig. 4 – Model simulation of motion direction discrimination.
A: Motion direction discrimination thresholds predicted by
our model (±1 standard deviation for 10 repetitions of the
simulation) for cardinal (dashed) and oblique (solid)
directions. When the stimuli contained only a single
direction ofmotion (zero directional variance), discrimination
thresholds were lower for cardinal than for oblique
directions. This matches the experimental results presented
in Fig. 2. With increasing stimulus directional variance, the
oblique effect diminished and eventually disappeared. B: The
prediction of the model matches experimental results from a
previous study (data from Dakin et al. 2005, copyright of
ARVO, reproduced with permission). Thresholds in a motion
discrimination task are presented for a single subject.
Two directions, an oblique (grey squares) and a cardinal
(white circles), are compared for different levels of direction
standard deviation (SD, equivalent to the stimulus standard
deviation in our model).

7B R A I N R E S E A R C H 1 2 9 9 ( 2 0 0 9 ) 3 – 1 6



of the vector averaging andwinner-take-all models to account
for the psychophysical results is probably due to the fact that
both of these algorithms are necessarily invariant with regard
to the tuning widths of the units in the model MT population.
The population vector algorithm assigns equal weights to all
the units in computing the population average, whereas the
maximum likelihood algorithm weighs evidence from some
units more than others, depending on their tuning width. The
winner-take-all model also does not utilize the anisotropies in
the encoding of oblique and cardinal directions that are
present in the population of MT units.

3. Discussion

3.1. A novel directional anisotropy in motion perception

Perception of motion is not isotropic. Motion in some
directions is perceived more accurately than motion in other

directions. We measured motion direction discrimination
thresholds for eight directions and found lower discrimination
thresholds for the cardinal directions (up/down, left/right)
than for the oblique direction (off-cardinal diagonals). This
result is a replication of previous findings (Ball and Sekuler,
1982; Dakin et al., 2005; Gros et al., 1998).

In addition, we have demonstrated a novel anisotropy in
motion perception following motion adaptation. The adapt-
ing stimuli were RDKs containing dots moving in different
directions with a distribution of directions centered at either
a cardinal or an oblique direction. Directional variance of
the adapter was manipulated by changing the variance of
the distribution of directions of the individual dots. The
strength of adaptation was measured by determining the
amount of coherent motion required to null the resulting
motion aftereffect.

For adapting stimuli with a small standard deviation of
motion directions (0–17°), there was no difference between the
magnitude of the MAE induced in cardinal and oblique
directions. However, for intermediate standard deviations
(22.5–45°), the MAE was significantly stronger for oblique
than for cardinal directions. When the standard deviation of
the adapting stimulus was very large (90°), minimal adapta-
tion occurred for both cardinal and oblique directions.

Our results suggest that the oblique effect in the MAE and
in motion direction discrimination may reflect common
neural mechanisms. Specifically, there may be directional
anisotropies in the encoding and decoding of stimuli in the
lower levels of the visual system that produce an oblique
effect for both motion discrimination and motion adaptation.

One account of the MAE posits that it stems from a
temporary imbalance in the activity levels of populations of
cells representing opposite directions (Barlow and Hill, 1963).
Direction-selective cells in area MT are known to change their
response characteristics following adaptation to a moving
stimulus (Petersen et al., 1985). Among other changes, the
response of these cells to moving stimuli was reduced
following adaptation. Additional evidence, collected in the
human brain using fMRI, also suggests that activity in area MT
may be contributing to the MAE. Thus, presentation of an
adapting stimulus caused direction-specific adaptation in
human area MT+ and other visual cortical areas (Huk et al.,
2001). However, there was no increase in the net activity
measured in area MT+, suggesting that the MAE was induced
not by a change in overall magnitude of activity in area MT+,
but rather from differences in activity in different populations
of direction-selective MT cells. Taken together, these results
suggest that the sensation of motion relies on the distribution
of activity within large populations of cells coding for
direction, rather than an isolated change in the activity of a
particular subset of direction-selective cells.

3.2. A model of encoding and decoding in V1 and MT

In order to explore possible mechanisms underlying our
psychophysical results, we constructed a model of encoding
of motion stimuli by populations of cells, based on the
hierarchical organization of cortical areas V1 and MT. These
areas contain neurons that are responsive to motion
stimuli and selective for motion direction. Additionally, we

Fig. 5 – Comparing different decoding mechanisms. Model
predictions of differences between cardinal and oblique
adapting stimuli in the strength of the MAE (dashed lines)
were compared to coherence threshold differences in the
experimental results (solid line, same as the data presented
in Fig. 3B). Three decoding mechanisms were compared: (A)
the statistically optimal maximum likelihood model, (B) the
vector averaging model, and (C) the winner-take-all model.
The maximum likelihood model clearly provided the best fit
of the experimental data.
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implemented a decoding scheme based on a statistically
optimal maximum likelihood decoding algorithm. Our results
cannot be fully explained by reference to only the encoding or
decoding aspects of our model, suggesting that an explana-
tion of complex perceptual phenomena, such as the direc-
tional anisotropy in motion perception, requires an
understanding of the mechanisms underlying both encoding
and decoding of stimulus information. A similar approach has
been successful in accounting for anisotropies in texture
perception (Cohen and Zaidi, 2007).

3.2.1. Encoding
Area V1 contains direction-selective cells, and there are direct
excitatory monosynaptic projections from area V1 to cells in
area MT. Therefore, previous models of encoding by cells in
area MT often contained a V1 layer with feedforward projec-
tions to a second MT layer (Rust et al., 2006; Simoncelli and
Heeger, 1998).

Another typical feature of these models is divisive normal-
ization of the input to each cell in area MT by the summed V1
activity. Divisive normalization has been demonstrated phy-
siologically in V1 (Carandini et al., 1997). Moreover, introdu-
cing divisive normalization in these models produces
behaviors characteristic of MT. For example, the tuning of
divisive normalization in the V1 to MT projection determines
whether the MT cells integrate and average the pattern of
motion of several different elements within their receptive
field or whether they respond to each part of the pattern
separately (Rust et al., 2006).

In order to account for the directional anisotropy we
observed in our behavioral experiments, we introduced a
directional anisotropy in the encoding process, based on
anisotropies revealed in physiological experiments in cat
primary visual cortex (Li et al., 2003). There were more V1
model units preferentially tuned to cardinal directions than
units tuned to oblique directions, and the width of tuning of
the units encoding cardinal directions was narrower than the
width of the units encoding oblique directions. The model
units representing MT cells then inherited the encoding
anisotropy through the feedforward connections implemen-
ted in themodel. Single-cell recordings frommacaque areaMT
indicated no directional anisotropy in the population of
recorded neurons (Churchland et al., 2003), a result that is
inconsistent with our model predictions. However, stimuli
moving in cardinal directions activate a larger cortical area
within owl monkey MT than stimuli moving in oblique
directions, as measured using intrinsic signal optical imaging
(Xu et al., 2006). Optical imaging has produced inconsistent
results regarding the possible existence of a directional
anisotropy in area V1, possibly related to differences across
studies in the portion of the visual field representation that
was imaged (Xu et al., 2006, 2007).

In order to understand the origins of these anisotropies,
Dakin et al. (2005) performed an analysis of the statistics of
motion energy present in movies recorded in natural environ-
ments. This analysis revealed greater motion energy in
cardinal than oblique directions during movement through
natural environments. If the visual system is able to learn
these statistical regularities, the anisotropy in motion percep-
tion may be a consequence of experience. Indeed, the oblique

effect can be partially abolished with training (Ball and
Sekuler, 1982; Furmanski et al., 2004). However, comparisons
between subjects from different ethnic groups, living in
similar environments, indicated slight differences in the
oblique effect in sensitivity to different orientations (Ross
and Woodhouse, 1979; Timney and Muir, 1976). This suggests
that there may be a genetic component of at least some types
of oblique effect. Thus, anisotropies in visual inputs could
possibly generate perceptual and neural anisotropies though
natural selection as well as through experience-dependent
development.

The encoding of the motion aftereffect was implemented
in ourmodel by applying activity-dependent adaptation to the
MT cells. Consistent with the physiologically measured
reduction in response amplitude of MT cells following
exposure to motion in their preferred direction (Petersen et
al., 1985), we assumed that MT cells integrate information
about ongoing activity in the V1 cells through their synaptic
connections. Specifically, the cells in our model that
responded most vigorously to the adapting stimulus were
the cells that responded the least to the post-adaptation probe
stimulus.

3.2.2. Decoding
Our model implements an optimal decoding scheme based on
the activity of the population of units representing MT
neurons. This scheme determined the direction of motion
that wasmost likely for each stimulus, given the population of
MT neurons that responded to that stimulus. In our imple-
mentation of the model, the likelihood of a direction was
weighted not only by the activity of the units representing that
direction, but also by the relative reliability of the cells'
responses, as reflected in the relative width of their tuning.

This kind of algorithm has been shown to be neurally
plausible. A network of realistic neurons can implement
maximum likelihood decoding (Deneve et al., 1999; Jazayeri
and Movshon, 2006), and neurons in higher-level visual areas,
reading out the information from area MT, modulate their
activity pattern in a way which is consistent with this
algorithm (Gold and Shadlen, 2001). Also, human observers
have been found to act near-optimally when integrating
information in their sensory environment (Battaglia et al.,
2003; Ernst and Banks, 2002). These findings suggest that
decoding of information that is represented at an intermediate
level of processing, such as area MT, may proceed in a
statistically optimal fashion.

We tested ourmodel of decoding by comparing the optimal
maximum likelihood strategy to other decoding algorithms.
Specifically, we tested two decoding schemes which have
been proposed for MT neurons: a vector averaging algorithm
(Nichols and Newsome, 2002; Zohary et al., 1996) and a
winner-take-all algorithm (Salzman and Newsome, 1994;
Zohary et al., 1996; Nichols and Newsome, 2002). The best
description of our data is clearly provided by the optimal
maximum likelihood decoding algorithm. A recent study has
shown that different decoding strategies may be used in
solving different tasks, even if the strategies employ the same
decoding algorithm. A maximum likelihood algorithm
accounted for subjects' performance for both coarse and fine
direction discriminations, but slight biases in the subjects'
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performance revealed that information about coarse and fine
discriminations was derived from different populations of
neurons (Jazayeri and Movshon, 2007).

Furthermore, we cannot exclude the possibility that, under
particular circumstances, decoding schemes other than the
maximum likelihood mechanism may be utilized. For exam-
ple, when integrating visual and auditory information in a
target localization task, subjects probably use a hybrid
decoding strategy. Specifically, they combine the maximum
likelihood decoding algorithm with a tendency to rely on
visual information rather than on auditory information, which
is a form of the winner-take-all model (Battaglia et al., 2003).

In addition, implementations of the maximum likelihood
algorithm in models of neural networks require multiple
iterations to converge (Deneve et al., 1999). Thus, the
implementation of this algorithm in the brain may be more
time consuming than implementation of the vector averaging
or winner-take-all decoding algorithms andmay requiremore
information about the tuning properties of the encoding cells
than these alternative algorithms (Oram et al., 1998). Thus, the
brain may employ different decoding schemes, depending on
the task being performed and on the information available.

3.3. The effect of stimulus directional variance on the
oblique effect in direction discrimination

In addition to accounting for our psychophysical results, our
model also produces novel predictions. Specifically, as the
directional variance of the stimulus increases, absolute
thresholds in the motion direction discrimination task should
also increase, but the directional anisotropy of these thresh-
olds (the difference in thresholds for cardinal and oblique
stimuli) should decrease. This prediction was not tested in our
behavioral experiments, as subjects performed the direction
discrimination task only in the zero directional variance
condition.

However, this prediction has been tested in a previous
study (Dakin et al., 2005). Human observers performed a
motion direction discrimination task in both cardinal and
oblique directions, and the directional variance in the
stimulus was manipulated. Two results were obtained in
Dakin et al.'s study that are pertinent to this discussion: 1) as
the directional variance of the stimulus increased, the thresh-
old of direction discrimination increased. That is, the task
became more difficult. 2) As the directional variance of the
stimulus increased, the oblique effect decreased. That is, the
difference between direction discrimination thresholds in the
oblique and the cardinal directions became smaller. At
sufficiently large directional variances, the oblique effect
was completely abolished. Both of these results are captured
in the results of the simulations we conducted.

Despite the match between our model and the empirical
results obtained by Dakin et al., there are differences in
interpretation between our study and that of Dakin et al. They
interpreted their results within the framework of an equiva-
lent noise model, which assumes that direction discrimina-
tion thresholds reflect the sum of the noise that exists in the
stimulus (the variance in the motion directions of the
elements) and the internal noise (in the representation of
the stimulus by the visual system). In contrast, our computa-

tional modeling results suggest that the relationship between
variance of motion direction in the stimulus and direction
anisotropy in motion direction discrimination thresholds can
be accounted for by a combination of directional anisotropies
in stimulus encoding and a maximum likelihood decoding
strategy. Both the equivalent noise model of Dakin et al. and
our computational model of V1 and MT provide an excellent
description of the behavioral results (Fig. 4).

However, the two models make different predictions
regarding the existence of physiological directional anisotro-
pies in areaMT. Ourmodel posits that an oblique effect should
be present in the tuning of MT neurons (inherited from the V1
neurons), while Dakin et al. conclude that no such oblique
effect should exist in MT. Their interpretation relies on the
assumption that when the standard deviation of the direc-
tions of motion in the stimulus is small, there is no need to
integrate over many different elements, and the reliability of
the representation will therefore be limited by the fidelity of
the responses of cells in V1. When the standard deviation of
the stimulus is larger, cells inMTmust integrate the directions
of motion of all the elements within their receptive fields.
Thus, Dakin et al. reason that when integration over many
elements is required in order to determine the direction of
motion of the pattern, the threshold results from the activity
of MT cells. However, more recent physiological recordings
have shown that MT neurons only integrate elements within
their receptive fields when these elements spatially overlap
(Majaj et al., 2007).

3.4. Task dependence of the oblique effect for motion

Our model posits that the behavioral oblique effect is a
consequence of an anisotropy in the primary representation
of motion stimuli and of the decoding mechanism applied to
this representation. If the oblique effect is indeed a conse-
quence of the primary representation of the stimulus, it
should also be present for other tasks involving motion
perception. However, directional anisotropies have not been
found for detection of coherent motion in a field of incoher-
ently moving dots (Gros et al., 1998) or for speed discrimina-
tion (Westheimer, 2003). One interpretation of the lack of
oblique effect in these tasks is that encoding of the motion
stimulus by the visual system is isotropic, and the anisotropy
only results from decoding in higher-level areas (Westheimer,
2003).We have not simulated eithermotion detection or speed
discrimination tasks in the characterization of our model.
However, the model is constructed such that the total firing
rate of the population of MT cells is invariant to motion
direction. This invariance is consistent with the lack of
directional anisotropy in tasks requiring detection of coherent
motion. Simulations of these tasks will be the topic of further
studies of the model.

3.5. Summary and conclusions

Wehave described a novel oblique effect inmotion perception
inwhich the tuningwidth of adaptation is different for oblique
and cardinal directions. In addition, we constructed a compu-
tational model of encoding and decoding of motion direction
information in the visual system. Our model accounts for four
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distinct psychophysical findings: 1) an oblique effect in the
strength of motion adaptation (Figs. 3 and 5), 2) an oblique
effect in the width of direction tuning of motion adaptation
(Figs. 3 and 5), 3) an oblique effect in motion direction
discrimination thresholds (Fig. 2 and the points in Fig. 4A
corresponding to zero directional variance in the stimulus),
and 4) the directional tuning of the oblique effect in motion
direction discrimination, originally described by Dakin et al.
(2005) (Fig. 4).

Themodel accounts for these findings only when a specific
combination of encoding anisotropies and decoding mechan-
ism is implemented. On the encoding side, more V1 units
represent cardinal directions than oblique directions, and the
units coding for cardinal directions are more narrowly tuned
than those coding oblique directions. These directional
anisotropies are inherited by MT units through the pattern
of connectivity between V1 and MT. On the decoding side, a
statistically optimal maximum likelihood decoding algorithm
is used to read out the information from the population of MT
units. These modeling results emphasize the significance of
addressing both encoding and decoding of stimulus informa-
tion when describing complex perceptual phenomena.

4. Experimental procedures

4.1. Subjects

Subjects were 16 young adults (6 female, mean age 24.1±
3.3 years) with normal or corrected-to-normal vision. All
subjects were naïve to the purpose of the experiment and
had no prior experience in performing psychophysical tasks.
All subjects provided written informed consent, and the
experimental protocols were approved by the Committee for
the Protection of Human Subjects at the University of
California, Berkeley.

4.2. Stimuli and experimental procedures

Stimuli were produced using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997) for Matlab (Mathworks, Natick,
MA) on Macintosh OS 10 (Apple, Cupertino, CA). The stimuli
were presented on a Multisync FE992 CRT monitor (NEC,
Tokyo, Japan) at a screen resolution of 600×800 and a refresh
rate of 85 Hz. The edges of the screen were obscured with a
circular cardboard aperture that eliminated any cues that
could have been provided by the monitor frame. Similarly, a
circular fixation point was used to eliminate the possibility of
orientation cues. Subjects were seated comfortably and used
a chin rest to insure consistent presentation of the stimuli.

4.2.1. Experiment 1 — motion direction discrimination
Stimuli were random dot kinetograms (RDK). The RDKs were
presented within a circular annulus covering 1.0–3.1° radius
from the fixation point. The RDKs always contained 100%
coherent motion. However, dots moved to another position in
the annulus after a lifetime of two monitor refresh frames in
order to prevent the possibility of extracting the direction of
the stimulus by tracking a single dot. Dots were approxi-
mately square and were 4.8 arcmin in size. The dot density

was approximately 2 dots/degree2, and the dot velocity was
13°/s.

In each trial (see Fig. 1A for the trial structure), subjects
viewed a 500 ms RDK stimulus followed by a 200 ms
interstimulus interval and then another 500ms RDK stimulus.
The stimuli moved in the same direction in half of the trials
and moved in different directions, separated by a small angle,
α, in the other half. In the trials for which two different
directions were shown, the first or the second stimulus
(randomly selected for each trial) had a standard motion
direction that was maintained throughout a testing block. For
the remaining trials in which the stimuli had the same
direction, the two stimuli could be the standard for that
block, standard+α, or standard−α. Subjects were asked to
respond whether the stimuli were moving in the same or in
different directions within a 625 ms response period. They
received auditory feedback following each trial.

A brief training session was administered prior to the first
testing session to verify that the subjects understood the
instructions and to acclimate the subjects to the task. Then,
four testing sessions were administered. Each testing session
was divided into 8 blocks of 50 trials each. In each block, the
standard stimulus was kept constant and was one of the
cardinal directions or one of the off-cardinal diagonals
(oblique directions), randomly assigned to each block. The
difference between the standard and comparison stimulus
was adjusted in each trial according to the QUEST algorithm,
and the threshold in each block (for ~80% correct perfor-
mance) was estimated according to this algorithm (Watson
and Pelli, 1983). Thresholds were defined as the average of
the four estimates for each of the eight directions. Subjects
were given the opportunity to rest between blocks.

4.2.2. Experiment 2 — MAE tuning width measurement
RDKs were presented in a circular region with a radius of 4°
around the fixation point. Each block of 50 trials began with
presentation of an adapting stimulus for 40 s (Fig. 1C). Then,
at the beginning of each trial, the adapting stimulus was
presented for an additional 4 s (top-up adaptation). Following
a 50 ms interstimulus interval, a test stimulus was presented
for 500 ms. Subjects were required to indicate whether the
stimulus was moving in the same direction as the adapting
stimulus or in the opposite direction (Blake and Hiris, 1993).
Responses were collected during a 625 ms response interval.
The motion coherence of the test stimulus was adjusted in
each trial according to the responses in previous trials, based
on a 2-up/1-down staircase (converging on ~70% correct
performance). The threshold was then determined by fitting a
cumulative Weibull distribution to all the trials in the
assessment. The goodness of fit was determined for each
psychometric function, and thresholds that did not conform
to a Weibull function (Evans et al., 1989) were excluded from
additional analysis. Specifically, we excluded all thresholds
that did not have at least a 99% probability of coming from a
Weibull distribution (Watson, 1979).

A brief training session was administered for each subject
to verify that he or she understood the instructions and was
acclimated to the task. Then, each subject participated in four
testing sessions. In two of the testing sessions, the adapting
direction was the oblique direction for which the subject's
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threshold in Experiment 1 was highest. In the other two
sessions, the adapting direction was the cardinal direction for
which the subject's threshold in Experiment 1 was lowest. The
order of administration of these different directions was
counterbalanced across subjects. In each testing session, 8
blocks were administered. Blocks differed in the variance of
directions of motion that were present in the adapting
stimulus. Stimulus variance was manipulated by assigning a
motion direction to each dot in the RDK from a Gaussian
distribution (Fig. 1B). The distribution mean was the adapting
stimulus direction, and the standard deviation of the Gaussian
determined the directional variance for that block of trials.
The standard deviations used were 0 (no variance, all dots
moved in the same direction), 2.8125, 5.625, 11.25, 16.875, 22.5,
45, and 90°.

4.3. Computational model of motion processing in
visual cortex

4.3.1. General model structure
The model consisted of one layer representing motion
direction-selective V1 cells and one representing MT cells. V1
units projected in a feedforward manner to the MT units,
whose firing rate was determined from the activity of their
inputs from V1 cells and the strength of the synaptic
connections between each V1 cell and each MT cell. Finally,
the direction of the stimulus was decoded from the activity
across the population of MT cells using amaximum likelihood
procedure.

Following the physiological evidence from primary visual
cortical neurons (Li et al., 2003), directional anisotropies were
implemented in the V1 layer. Thus, there were more cells
representing cardinal directions in the V1 layer, and the mean
tuning width of these cells was narrower than the tuningwidth
of cells representing oblique directions. The MT cells inherited
these anisotropies through a homogenous set of connections
between V1 and MT.

The different stimulus variance conditions were simulated
by providing each V1 unit with an instance of one direction of
motion for each iteration of the model. This simulated the
RDK used in the experiments, under the assumption that each
dot in the RDK excited one V1 unit. The directions of motion of
the inputs to the V1 cells were drawn from a distribution of
directions, and the variance of this distribution corresponded
to the directional variance of the stimulus. Before being
passed to the MT units via the synaptic connections between
the layers, the output of every V1 unit was normalized by the
sum of the activity of the entire population of V1 cells. Then,
activity in each MT unit was computed, based on the activity
in the connected V1 cells. Finally, the stimulus direction was
decoded from the activity of the population of MT units using
a maximum likelihood procedure. We adopted the conver-
gence level used by Rust et al. (2006) of 12 V1 cells for each MT
cell. Our complete model contained 32 MT units and 384 V1
units.

4.3.2. Generating model activity
In the first layer, representing V1 cells, the firing rate of each
unit as a function of stimulus direction was described by a
circular Gaussian distribution, also known as a von Mises

function (Patel and Read, 1996). This is a bell-shaped tuning
curve of the form:

f hð Þ = aV1e
cos h#h0ð Þ

Z + bV1 ð1Þ

θ0 is the unit's preferred direction, bV1 is the spontaneous rate of
the unit (set to 10 Hz for all V1 units), aV1 is the maximal
stimulus-evoked response to a stimulusmoving in thepreferred
direction (set to 100 Hz for all V1 units), and Z=1/(σ U360UBessel
(1/σ)). Z determines the width of tuning. Bessel(x) is a Bessel
function of the first kind of x and σ, is the tuning width of each
V1 cell, whichwas set according to the cell's preferred direction:

r h0ð Þ = g 1# cos 4h0ð Þð Þ + ϵ ð2Þ

γ is a parameter that determines the ratio between themaximal
tuning width (occurring in the cells tuned to oblique directions)
and the minimal tuning width (occurring in cells tuned to
cardinal directions). This minimal tuning width is represented
by ɛ and was set to 45°. In addition, V1 cells were distributed
unevenly along the different directions, according to the
following equation:

q h0ð Þ = b 1# cos 4h0ð Þð Þ + d
360

ð3Þ

β is a parameter that determines the ratio between the densest
representation (the difference in degrees between cells with
preferred directions around the cardinal directions) and the
sparsest representation (the difference between cells with
preferreddirectionsaroundobliquedirections), andδcorresponds
to the smallest difference between the preferred directions in the
representation of cardinal directions, set to 1. In the results
presented here, β and γ were set to 1.2 and 2, respectively. How-
ever, as verified by an extensive study of the parameter space,
similar results were obtained over a range of values of β and γ.

In each trial, the firing rate of each cell was determined by
randomly choosing θ from a distribution with the mean set to
be either a cardinal or an oblique direction (in different runs
of the model simulation) and with a standard deviation
corresponding to the directional variance of the stimulus
tested in that trial. This θ determined the mean response of
the cell, based on its directional tuning curve. The activity of
the cell in each trial was then determined according to a
Poisson distribution:

P rjhð Þ = f hð Þr

r!
e#f hð Þ ð4Þ

In practice, r was determined for each V1 unit and each
trial by drawing a number from a Poisson random number
generator with mean equal to the firing rate of the cell in
response to that trial's stimulus, or f(θ).

Before passing the V1 outputs to the MT cells, a static non-
linearity (a squaring) was applied to the output of the V1 cells,
and divisive normalizationwas applied to this squared output:

r ̂i hð Þ = ri hð Þ2P
jaV1 rj hð Þ + f

ð5Þ
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where ζ is a parameter which controls the relative contribu-
tion of the other V1 units to reducing activity of a given V1
unit. An exploration of different values of ζ verified that the
results are qualitatively the same as long as the output of
this stage was between the noise level (bV1 in Eq. 1) and the
gain of the firing rate (aV1 in Eq. 1).

The connectivity for each pair of V1 and MT cells was
defined according to a von Mises function:

wij = aMTe
cos hi#hjð Þ

Z + bMT ð6Þ

i is an index of the MT cell and j is an index of the V1 cell,
aMT=aV1=100 Hz and bMT=bV1=10 Hz. As in Eq. 1, Z determines
the direction tuning width of the connectivity between V1 and
MT. Z was set such that the direction tuning width of the
connectivity was always equal to 45°, independent of the
preferred direction of the units. The inputs to each cell were
set such that the sum of the synaptic weights to the
population of MT cells was the same for all possible stimulus
directions.

The firing rate of eachMT cell, fi(θ), was then determined by
summing over all of its inputs from V1:

fi hð Þ =
X

jaV1
wij hð Þr̂j hð Þ ð7Þ

The activity for each MT cell and each trial was then
determined by drawing a number from a Poisson number
generator, as in Eq. 4. The resulting profile of activity in
MT is the population code on which decoding then
proceeds.

4.3.3. Decoding
Decoding of the direction of motion from the activity of the
population of MT cells was done according to a statistically
optimal scheme. Under this scheme, we are interested in
finding the motion direction θ which is maximally likely,
given a certain distribution of activity in the population of MT
units, rMT. That is:

ĥ = argmax
h

P hjrMTð Þf g ð8Þ

Here, h ̂ is the θ that maximizes the likelihood of θ given a
particular rMT. However, the functional form of this likelihood
is unknown. Bayes's theorem states that the likelihood of θ
given rMT and the inverse likelihood, of rMT given θ, or P (rMT|θ),
are closely related:

P rMTjhð Þ = P hjrMTð ÞP rMTð Þ
P hð Þ ð9Þ

Therefore, assuming that the prior probability distributions
for both θ and rMT are flat (the probability of activity is the
same for all units and no direction is more likely to appear
than any other direction):

argmax
h

P hjrMTð Þf g = argmax
h

P rMTjhð Þf g ð10Þ

As described above (Section 4.3.2 Generating model
activity), the actual likelihood functions of activity in the
MT cells, given θ, are independent Poisson processes.

Therefore, the likelihood of the population activity of all
the MT cells, given θ, a sum of these probabilities, is also a
Poisson distribution (Pitman, 1993) which resembles the
Poisson distribution that characterizes the firing rate of indi-
vidual units (Eq. 4):

P rMTjhð Þ = fMT hð ÞrMT

rMT!
e#fMT hð Þ ð11Þ

In practice, we approximate and maximize the following
log likelihood function (Jazayeri and Movshon, 2006; Seung
and Sompolinsky, 1993), which is derived by taking the log of
Eq. 11:

LogL hð Þ =
X

iaMT
logP rijhð Þ

=
X

iaMT
rilogfi hð Þ #

X

iaMT
fi hð Þ #

X

iaMT
log ri!ð Þ ð12Þ

The last term can be dropped, as it does not depend on θ.
The second term can also be dropped, as the model was
constructed so that the total firing rate does not depend on
the direction of the presented stimulus. Specifically, the sum
of the inputs to the population of MT cells was set so that it
was independent of stimulus direction. Therefore, Eq. 12
reduces to:

LogL hð Þ =
X

iaMT
rilogfi hð Þ ð13Þ

The tuning curves of cells in the MT layer, fi(θ), result from
both the tuning curves of the V1 cells as well as the
connectivity between the V1 and MT layers. Therefore, we
do not have an analytical form of these tuning curves.
However, there is an empirical form of the tuning curve for
each MT cell which can be derived by summing the V1 tuning
curves and assigning a weight to each V1 tuning curve
corresponding to the strength of the V1/MT synapse:

f emp
i hð Þ =

X

jaV1
wijfj hð Þ: ð14Þ

These empirically derived tuning curves resemble the form
of the circular Gaussian V1 tuning curves described by the von
Mises function (Eq. 1). Therefore, we also approximated the
tuning curve for each MT cell by a von Mises function:

fi hð Þcaie
cos h#h0ð Þ

Z + bi ð15Þ

The parameter ai, describing the tuning width of the
unit, was estimated from the width of the empirically
derived tuning curve (Eq. 14) at half maximum. Following
Jazayeri and Movshon (2006), the approximate log likelihood
function is then the log of each unit's tuning curve,
weighted by the inverse of its relative tuning width and by
the activity of the unit in a given trial. This quantity was
summed over the population of units in MT:

LogL hð Þc
X

iaMT
ri

jiP
jaMT jj

cos h# hið Þ ð16Þ

where ri is the activity of the cells for a given trial and κi is
the inverse of the tuning widths as estimated from the
empirical tuning curves (ai in Eq. 15). In this sum, the cells
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with smaller tuning widths are weighted more heavily than
the cells with larger tuning widths. For each iteration of the
model, we used an unconstrained nonlinear optimization
algorithm (implemented as the Matlab function fminsearch)
to find a value of θ that maximizes this log likelihood
function, given the population response in MT.

4.3.4. Estimating the MAE strength
In order to simulate the MAE, we presented the model with a
stimulus of 0% coherence following an adapting stimulus. The
response amplitude of most MT cells decreases following
adaptation to motion stimuli (Petersen et al., 1985). This
reduction in amplitude may actually be greater when the
adapting direction is slightly different from the preferred
direction (Kohn and Movshon, 2004). However, for simplicity,
wemodeled adaptation inMT such that the adaptation in each
unitwasproportional to the response to theadapting stimulus.
Thus, the strongest adaptation occurred in cells tuned to the
adapting stimulus. The activity in response to the probe
stimulus (with 0% coherence) was then calculated for the V1
cells and propagated to the cells in theMT layer (for simplicity,
we assumed that V1 cells do not adapt). The firing rate in each
MT cell in response to the probe stimuluswas calculated based
on a combination of its V1 inputs and the adaptation state of
theMT cell. Thus, each cell's response to the adapting stimulus
was multiplied by a factor that determines the strength of
adaptation. The value of this factor can vary rather substan-
tially without significantly affecting the results, as long as the
firing rates donot becomenegative. For each cell, the firing rate
during adaptation was subtracted from the firing rate that
would have been obtained in the post-adaptation probe stimu-
lation, had there been no adaptation. The actual firing is then
derived from the Poisson distribution, as described above (Eqs.
4 and11). TheMAEstrengthwas estimated fromthe ratio of the
likelihood of the adapting stimulus and the stimulusmoving in
the opposite direction. This ratio can be calculated from the
difference between the log likelihood functions of the two
directions (Jazayeri and Movshon, 2006). We compared the
likelihood ratios to the value of the likelihood ratio when
the adapting stimulus had a standard deviation of 0°.

4.3.5. Estimating the direction discrimination threshold
In each presentation of a stimulus to the model, the θ that
maximized the log likelihood function (Eq. 13) was considered to
be the direction perceived by the observer for that stimulus
presentation. However, due to variability of the neuronal res-
ponses across presentations of the same stimulus, this maxi-
mum likelihood direction varied between presentations of the
same stimulus. The level of variability limited the fidelity of the
representation ofmotion direction. This limit corresponds to the
threshold obtained from the two alternative forced choice
procedure employed inourpsychophysical experiments (Fig. 1A).

We quantified this variability by estimating a distribu-
tion of the differences between the perceived stimuli in two
consecutive presentations of the same stimulus. The model
was iterated 100 times. For each iteration, the same
stimulus was presented twice in succession, and the
observed stimulus was decoded for each presentation (see
Section 4.3.3 Decoding). The difference between the two
decoded stimuli was denoted Δθ. Over the 100 iterations of

the model, we constructed a distribution of Δθ. We defined
the median of the distribution of Δθ for a given condition
(direction and standard deviation) to be the threshold for
that condition (Han et al., 2007; Kim and Bao, 2008), in
order to satisfy the 50% guess rate in the two alternative
forced choice paradigm used in the psychophysical mea-
surements of direction discrimination thresholds.

4.3.6. Alternative decoding mechanisms
Two alternative decoding mechanisms were tested. Vector
averaging involves computation of a weighted average over all
of the cells in area MT. Each cell contributed a vector pointing
in the direction best represented by its inputs and proportional
in size to its firing rate. Then, the vectors were summed. The
direction of this summed vector was considered to be the
predicted stimulus direction. This mechanism has been
proposed for other neural populations (Georgopoulos et al.,
1986) and forMT neurons, under some conditions (Nichols and
Newsome, 2002; Zohary et al., 1996). The strength of the MAE
was estimated in a manner similar to the one described above
(Section 4.3.4 Estimating the MAE strength). A stimulus with
0% coherence was presented to a population of cells, following
adaptation. Then, the MAE strength was considered to be the
relative length of the projection of the population vector in the
direction opposite to the adapting direction.

The other alternative decoding mechanism we considered
was a winner-take-all mechanism. Here, the decoding of MT
activity occurs by identifying the cell with the most activity
and assigning the predicted direction to the optimal direction
for that cell, computed from the cell's inputs. This has also
been suggested to be a decoding mechanism of activity in MT
under certain circumstances (Salzman and Newsome, 1994;
Zohary et al., 1996; Nichols and Newsome, 2002). Here, the
MAE strength corresponded to the ratio of the activity in the
cell preferring the adapting direction and the activity in the
cell preferring the direction opposite to the adapting direction.
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