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Reduced gamma-aminobutyric acid (GABA) levels in cerebral cortex are thought to con-
tribute to information processing deficits in patients with schizophrenia (SZ), and we have
previously reported lower in vivo GABA levels in the visual cortex of patients with SZ.
GABA-mediated inhibition plays a role in sharpening orientation tuning of visual cortical
neurons.Therefore, we predicted that tuning for visual stimulus orientation would be wider
in SZ. We measured orientation tuning with a psychophysical procedure in which subjects
performed a target detection task of a low-contrast oriented grating, following adaptation
to a high-contrast grating. Contrast detection thresholds were determined for a range of
adapter–target orientation offsets. For both SZ and healthy controls, contrast thresholds
decreased as orientation offset increased, suggesting that this tuning curve reflects the
selectivity of visual cortical neurons for stimulus orientation. After accounting for gener-
alized deficits in task performance in SZ, there was no difference between patients and
controls for detection of target stimuli having either the same orientation as the adapter or
orientations far from the adapter. However, patients’ thresholds were significantly higher
for intermediate adapter–target offsets. In addition, the mean width parameter of a Gauss-
ian fit to the psychophysical orientation tuning curves was significantly larger for the patient
group. We also present preliminary data relating visual cortical GABA levels, as measured
with magnetic resonance spectroscopy, and orientation tuning width. These results sug-
gest that our finding of broader orientation tuning in SZ may be due to diminished visual
cortical GABA levels.
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INTRODUCTION
Schizophrenia (SZ) is a mental disorder that affects approximately
1% of the population and carries significant disability for affected
individuals. It is now recognized that cognitive deficits are a major
source of this disability, and unlike positive symptoms (e.g., hallu-
cinations and delusions), cognitive deficits in SZ (Green, 1996) are
at best only modestly affected by currently available pharmacolog-
ical treatments (Goldberg et al., 2007; Keefe et al., 2007). Therefore,
a deeper understanding of the biological mechanisms underly-
ing cognitive and information processing deficits in this disease
could lead to the identification of new treatment targets and have
significant public health benefits. In particular, the study of per-
ceptual deficits in SZ (Butler et al., 2008) offers insight regarding
specific neural circuit abnormalities, as the neuroanatomical and
neurophysiological substrates of perceptual processes are often
better understood than those of higher cognitive functions such
as memory or attention.

Gamma-amino butyric acid (GABA) is the main inhibitory
neurotransmitter in the central nervous system, and previous
research suggests that reduced GABA transmission may under-
lie cognitive impairment in SZ (Lewis et al., 2004, 2008; Cho
et al., 2006). However, until recently, estimates of GABA levels

in patients with SZ were only available from postmortem brain
tissue and relied on measurement of the expression levels of mol-
ecular markers of GABA synthesis. Using these methods, several
studies have reported reduced transcription of the 67-kDa iso-
form of the GABA metabolic enzyme glutamic acid decarboxylase
in cortical neurons of patients with SZ (Akbarian et al., 1995; Volk
et al., 2000; Hashimoto et al., 2008), which may result in decreased
synthesis of GABA (Asada et al., 1997). Similarly, levels of tran-
scription of the GABAergic neuronal markers somatostatin (SOM)
and parvalbumin (PV) are reduced in many cortical regions in SZ,
including the calcarine sulcus in the occipital lobe (Hashimoto
et al., 2008), consistent with a widespread GABA deficit in cortex.
In a recent study, we used proton magnetic resonance spectroscopy
(1H-MRS) to non-invasively and directly measure GABA levels
in vivo in patients with SZ and found that patients had reduced
visual cortical GABA levels relative to healthy controls (Yoon et al.,
2010).

Sensory systems provide an attractive experimental model for
studying GABA deficits in SZ. GABA-mediated inhibition has been
shown to modulate neuronal selectivity in a variety of mammalian
sensory systems, including somatosensory (Swadlow, 2003), olfac-
tory (Suzuki and Bekkers, 2007), auditory (Razak and Fuzessery,
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2010), and visual (Alitto and Dan, 2010) systems. In studies of the
visual system, behavioral experimental designs can draw on the
extensive knowledge provided by many years of basic physiological
research on the role of GABA in modulating visual responses. In
particular, physiologically informed visual psychophysics allows
precise control of the stimulus parameters that determine neu-
ronal responses, and quantitative methods are available to model
these responses and their effects on perception and behavior.
For example, surround suppression, the decrease in perceived
contrast and discriminability of a low-contrast stimulus by a
high-contrast surround stimulus, is reduced in SZ (Dakin et al.,
2005; Tadin et al., 2006; Yoon et al., 2009). Physiological corre-
lates of surround suppression in visual cortical neuronal responses
are thought to depend on GABAergic inhibition (Angelucci and
Bressloff, 2006), and we have demonstrated that human visual
cortical GABA levels are correlated with the magnitude of sur-
round suppression, as measured psychophysically (Yoon et al.,
2010).

Whereas the previous surround suppression studies provide
important information regarding impaired spatial contextual
interactions in SZ and their neurochemical correlates, the present
study focused on stimulus selectivity in SZ. Selectivity is a fun-
damental property of neuronal responses, and one of the best
understood examples of stimulus selectivity is the tuning of visual
cortical neurons to stimulus orientation, first described by Hubel
and Wiesel (1959). At least some of the tuning for stimulus
orientation in neurons in early visual cortex is due to GABA-
mediated modulation of their responses. Application of GABA
antagonists to visual cortex results in a widening of orientation
tuning curves (Sillito, 1975, 1979; Katzner et al., 2011), while
local administration of GABA itself sharpens tuning curves (Li
et al., 2008). In addition, analysis of the temporal characteristics
of tuned responses in V1 neurons demonstrates the importance
of inhibition in generating orientation selectivity (Ringach et al.,
2003; Shapley et al., 2003). Finally, a recent study using MRS
reported a positive correlation between a psychophysical mea-
sure of visual orientation discrimination and GABA levels in
human visual cortex (Edden et al., 2009). Importantly, orienta-
tion tuning may rely on different physiological mechanisms than
surround suppression (Ma et al., 2010). Therefore, a finding of
increased orientation tuning width in patients with SZ would
provide evidence for a generalized cortical GABA deficit in this
disease.

We employed a psychophysical adaptation procedure (Fang
et al., 2005) to measure orientation tuning in patients with
SZ and matched control subjects. Based on existing evidence
for GABAergic cortical deficits in SZ and for a critical role
of GABA in generating orientation-selective responses in visual
cortical neurons, we hypothesized that patients with SZ would
exhibit broader orientation tuning, as measured psychophysi-
cally. In a subset of participants, we also made preliminary mea-
surements on the relationship between this behavioral index of
orientation tuning and visual cortical levels of GABA, as mea-
sured with MRS. These findings have significant implications
for SZ research, because orientation tuning can be readily stud-
ied at the local cortical circuit level in animal models of this
disease.

METHODS
SUBJECTS
We studied 24 patients and 23 controls, matched on basic demo-
graphic factors (Table 1). Following exclusion based on the behav-
ioral criteria mentioned below, psychophysical measurements
were analyzed for 20 controls and 16 patients. Spectroscopy mea-
surements were obtained for a subset of these participants (seven
patients and seven controls). All patients were clinically stable
and were recruited as outpatients at the time of study. Diagnosis
was made by master or doctoral-level clinicians using SCID-I and
confirmed by consensus conference. Exclusion criteria were the
following: IQ <70, drug or alcohol dependence or abuse within
3 months of testing, a positive urine drug screen on day of testing,
major medical illness affecting brain function, or history of sig-
nificant head trauma. Exclusion criteria for controls were lifetime
diagnosis of a psychotic disorder or first-degree relative with a psy-
chotic disorder. Subscores from the Brief Psychiatric Rating Scale,
Scale for the Assessment of Negative Symptoms and Scale for the
Assessment of Positive Symptoms were used to derive indices for
the following three major domains of symptoms: reality distor-
tion, disorganization and negative symptoms (Barch et al., 2003).
This study was approved by the IRB at the University of California,
Davis, and all subjects provided written informed consent for all
study procedures.

TASK
Subjects performed a visual target detection task (Figure 1; Fang
et al., 2005). The display contained two rectangular placeholders
that were slightly brighter than background luminance and cen-
tered at 5˚ of eccentricity to the left and right of a central fixation
cross. Each block of trials began with an adapter stimulus con-
sisting of two Gabor patches (100% contrast, spatial frequency of
3 cycles/degree, Gaussian envelope SD of 4˚, tilted 45˚ clockwise
relative to vertical), with one patch presented in the center of each
of the placeholders. The initial adaptation period lasted for 20 s.
Then, the adapter stimuli were presented at the beginning of each
subsequent trial for a top-up adaptation period of 5 s. Following a
500-ms interval, a low-contrast target stimulus was presented for

Table 1 | Subject demographic and patient clinical characteristics.

Patients (n = 24) Controls (n = 23) p value

Mean SD Mean SD

Age (years) 26.8 10.4 29.0 6.8 0.4
Gender (% male) 80 90
Education (years) 13.5 1.7 16.7 2.1 <0.01
Parental education
(years)

14.4 2.4 15.2 2.4 0.3

On medication (%) 80
CPZ equivalents (mg) 394.0 406.1
BPRS score 40.6 12.0
Positive symptom
score

12.4 7.8

Negative symptom
score

15.6 7.0
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FIGURE 1 | Post-adaptation contrast detection task. Each block of trials
began with a 20-s adaptation period, in which two gratings were displayed
on either side of a central fixation cross. Each trial began with 5 s of top-up
adaptation, followed by a 500-ms interval and then presentation of a target
on one side of fixation. The target could appear in one of several orientation
offsets relative to the 45˚ adapter. Participants indicated whether the target
appeared on the left or right of fixation, and target contrast was adjusted
separately for each adapter–target orientation offset to maintain 82%
correct performance for each offset. Contrast, size, and spatial frequency of
the gratings have been altered in this figure to increase visibility.

200 ms at either the left or right adapted location. The target was
a Gabor patch with the same spatial frequency and phase as the
adapter stimulus, but smaller in size (SD of the Gaussian envelope
was 2.4˚) and lower in contrast. In addition, the target stimulus
had one of five orientation offsets (0˚, ±5˚, ±10˚, ±15˚, or ±45˚,
relative to the 45˚ adapter).

Subjects were asked to respond with a button press to indicate
which of the two placeholders contained the target (spatial two-
alternative forced choice). An auditory stimulus (a brief click) was
presented at the time of target onset. Targets were rotated either
clockwise or counterclockwise relative to the adapter, with clock-
wise and counterclockwise targets occurring randomly with equal
probability, thereby reducing the ability of participants to use an
off-orientation looking strategy to perform the target detection
task (Blake and Holopigian, 1985).

For each orientation offset, a Quest staircase was used to deter-
mine the threshold target contrast corresponding to 82% correct
detection performance (Watson and Pelli, 1983). This percentage
correct value was used because it is the point in the psychometric
function at which the threshold was assessed. Therefore, trials at
target contrast corresponding to 82% correct yield the most pre-
cise estimate of detection threshold (Watson and Pelli, 1983). This
adaptive staircase procedure adjusts target contrast based on the
subject’s performance in order to generate stimuli that are near the
subject’s psychophysical threshold for a given condition. In order
to separately account for differential effects of adaptation in the
two groups (SZ and control) and for potential group differences
in psychophysical performance due to the generalized deficit con-
found (Knight and Silverstein, 2001), each subject was tested on
the same task without adaptation, thereby providing a baseline
measurement of target detection performance. Since the effects
of orientation-selective adaptation may last for extended periods

of time (Blakemore et al., 1970), testing in the no-adaptation
condition always preceded testing in the adaptation condition.

In addition to providing an estimate of the threshold, the Quest
algorithm also generates a measure of error of the threshold
estimation, based on the reliability of the convergence of the
psychophysical staircase. We therefore computed a 90% confi-
dence interval (CI) for the threshold for each subject to assess
reliability of performance, independent of the absolute threshold
value for each orientation offset. One of the main concerns when
testing patients is that a generalized deficit could reduce response
reliability. Therefore, before data collection, each participant was
trained on the target detection task until he or she was able to per-
form the task at a pre-determined level of reliability (90% CI less
than 30% contrast for all orientation offsets, both with and with-
out adaptation). This exclusion criterion was approximately 10%
larger than the largest CI produced by an experienced psychophys-
ical observer, based on data from pilot studies. Two patients and
no controls were excluded based on this response reliability cri-
terion. In addition, of the participants who met the reliability
criterion during practice blocks, four patients and three controls
subsequently had a 90% CI that was greater than 30% contrast in
the 0˚ offset condition during testing, and these subjects were also
excluded from the study.

PROCEDURE
The experiments were conducted in a dimly lit room. Subjects
were seated with their eyes 50 cm from the display. A chin rest
was used in order to maintain this distance and to stabilize the
head. The stimuli were displayed on an LCD monitor, and lumi-
nance levels were gamma-corrected. Screen resolution was 1280 by
1024 pixels, monitor refresh rate was 60 Hz, and mean luminance
was 37 cd/m2. Visual stimuli were created using the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997) for Matlab.

EYE POSITION MONITORING
Although subjects were instructed to fixate on a central point,
patients with SZ can have difficulty controlling eye movements
(Lipton et al., 1983). We therefore monitored eye position with
an infrared camera placed in front of the participants’ eyes during
task performance. Auditory feedback was provided at the end of
every trial in which fixation was not maintained. In addition, the
psychophysical staircase was not updated following trials contain-
ing deviations from fixation, so these trials had no effect on the
estimates of the psychophysical thresholds. In addition, we ver-
ified that differences in eye position patterns could not account
for the group differences in target detection thresholds. In gen-
eral, participants infrequently failed to maintain fixation in the
adapted condition (patients: 2.8% of trials, SD: 1.3%; controls:
0.6%, SD: 0.3%), and the group difference did not reach statistical
significance (t 34 = 1.84, p = 0.07). The mean number of trials with
deviation from fixation was greater for patients than controls in the
no-adapt condition (patients: 2.0%, SD 3.3%; controls: 0.5%, SD
0.6%; t 34 = 1.94, p = 0.05). Importantly, this difference was driven
mainly by two patients who had 12.8 and 13.5% trials with devia-
tions from fixation. However, since our main results are consistent
whether or not the data from these two participants are excluded,
we chose to include their data. Moreover, because the adaptation
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measured here is specific to visual field location (Fang et al., 2005),
a higher rate of deviations from fixation would be predicted to
weaken the effects of adaptation. However, we found increased
levels of orientation-specific adaptation in the patients (Results).
Finally, there was no significant difference in the proportion of tri-
als with deviations from fixation between the adapted condition
and the no-adaptation condition in either group.

SPECTROSCOPY METHODS
A subset of the participants (seven controls and seven patients)
participated in a previous study in which GABA levels were mea-
sured using proton MRS (Yoon et al., 2010), and the MRS methods
are therefore only summarized here. Proton MRS was measured
using a Siemens Trio 3 Tesla MRI system. Paired surface coils
(Nova Medical, Wilmington, MA, USA) were positioned under the
occiput,and a 35 mm × 30 mm × 25 mm voxel was centered on the
calcarine sulci bilaterally. A single voxel MEGA-PRESS J-difference
spectral editing sequence measured total GABA (Mescher et al.,
1998). Using jMRUI software (Stefan et al., 2009), all spectra were
phase-aligned with reference to water, zero-filled from 1024 to
4096, apodized with a 4-Hz Gaussian filter, and frequency aligned
to creatine at 3.02 ppm. Peak integration was used to quantify
total GABA (2.99 ± 0.12 ppm) in the difference spectra and crea-
tine (3.02 ± 0.09 ppm) in the summed spectra. The ratio of total
GABA and total creatine signals was used for hypothesis testing
(Bogner et al., 2010).

ANALYSIS
Statistical analysis
For each participant, two target detection thresholds were mea-
sured for each orientation offset: one following adaptation and one
without adaptation. In order to account for between-subject dif-
ferences in detection threshold unrelated to the adaptation process,
we subtracted the no-adapter threshold from the adapter thresh-
old for each orientation offset. Statistical significance was assessed
with two-way ANOVAs, with adapter–target orientation offset as a
within-subject factor (five levels) and group (patients vs. controls)
as a between-subject factor. An ANOVA with these factors was con-
ducted separately for the adapt thresholds, for the no-adapt thresh-
olds, and for the differences in threshold (adapt minus no-adapt).

Tuning curve analysis
In order to compare orientation tuning width between the groups,
each participant’s differences in threshold (adapt minus no-adapt)
were normalized to that participant’s difference in threshold for
the 0˚ adapter–target offset. A bell-shaped Gaussian function is
often used to model orientation tuning curves in visual cortical
neurons and provides a good description of these curves (Swin-
dale, 1998). For each subject, we fit the normalized thresholds with
a simplified Gaussian tuning curve of the form:

e
−x2

σ2 ,

where e is the natural base of the logarithm, x are the different ori-
entation offsets, and σ is the single free parameter that determines
the width of the tuning curve. In addition, we fit a two-parameter
model that includes a vertical offset parameter (A):

(1 − A)e
−x2

σ2 + A

Parameter fitting was done using the“leastsq”function from the
“optimize” module of SciPy (Jones et al., 2001-), version 0.8. This
function uses a modified Levenberg–Marquardt algorithm to find
the minimum of the sum of squares of a function. In this case, the
function to be minimized was the difference between the Gaussian
curve for a given parameter setting and the recorded normalized
detection threshold data. In both models, the value of the width
parameter was constrained to be less than the largest orientation
offset used in the experiment (45˚). This criterion was met for all
participants except two patients. These two subjects displayed very
high psychophysical thresholds for all adapter–target offsets, indi-
cating that their responses were not selective for orientation and
suggesting that they may have been performing the task in a funda-
mentally different manner from the other participants. We there-
fore excluded data from these two participants from the compari-
son of orientation tuning between the groups. However, our con-
clusions hold if we include these two participants and assign them
a tuning width of 45˚ (the largest orientation offset we studied).

As the one- (tuning width) and two- (tuning width and verti-
cal offset) parameter models are nested, we compared them using
an F-test, measuring the decrease in error in the fit of the two-
parameter model while taking into account the loss in degrees
of freedom when this second parameter is added (Glatting et al.,
2007). In addition, we compared the two models using the Akaike
information criterion (AIC), corrected for sample size (Glatting
et al., 2007). The AIC estimates the amount of information lost
with the addition of parameters, relative to the gain in information
due to reduction of error. Therefore, smaller values correspond to
models that provide a better account of the data.

RESULTS
We used a combination of visual adaptation and a target detec-
tion task (Fang et al., 2005; Figure 1) to psychophysically measure
width of tuning for stimulus orientation in patients with SZ and
matched controls. In each trial, adapting stimuli (oriented Gabor
patches) were presented on either side of fixation for 5 s, followed
by presentation of a Gabor target in one of the adapted locations
(left or right). Target orientation differed from adapter orienta-
tion by one of five offsets: 0˚ (no difference between adapter and
target), 5˚, 10˚, 15˚, or 45˚. Threshold contrasts for target detection
were measured for each adapter–target offset.

For both patients and controls, contrast detection thresholds
decreased as the orientation offset between the adapter and the
target was increased, indicating tuning for stimulus orientation
(main effect of adapter–target offset in the ANOVA of the adapt
condition thresholds, F 1,150 = 272.94, p < 0.01, Figure 2A). In
addition, patients had higher overall target detection thresholds
than controls (F 1,36 = 5.14, p < 0.05). To assess whether this group
difference was driven by any particular orientation offset, we com-
pared thresholds between groups for each orientation offset using
two-tailed t -tests. We found significant group differences for all
orientation offsets except 0˚ (0˚: t 36 = 1.13, p = 0.26, 5˚: t 36 = 2.4,
p < 0.05, 10˚: t 36 = 1.99, p = 0.05, 15˚: t 36 = 2.15, p < 0.05, 45˚:
t 36 = 2.6, p < 0.05). Due to generalized deficits in cognition, atten-
tion, motivation, and other factors, patients with SZ are impaired
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FIGURE 2 |Target detection thresholds as a function of adapter–target
orientation offset define psychophysical orientation tuning curves. Data
are plotted for patients (gray) and controls (white). (A) Contrast thresholds for
detection of the post-adaptation target, as a function of adapter–target
orientation offset. (B) Detection thresholds when no adapter was presented.

(C) Difference in thresholds in the adaptation and no-adaptation condition. (D)
For each participant, thresholds were normalized to performance at 0˚
adapter–target orientation offset, and a Gaussian tuning curve was fit to each
participant’s data. Dashed lines indicate the means of the Gaussian fits for
each subject group. Error bars indicate SEM for each group and condition.

in performance of most behavioral tasks. These generalized deficits
typically limit the attribution of impairment on a particular task to
a specific cognitive or perceptual process (Knight and Silverstein,
2001). In order to measure orientation tuning while controlling
for the generalized deficit confound (in this case, worse overall
target detection performance in patients with SZ across all orienta-
tion offsets), we measured thresholds for each participant without
adaptation. No-adaptation thresholds capture group differences
in performance that are not due to differences in the adaptation
process and/or the width of orientation tuning.

As expected from the generalized deficit, there was a nearly
significant group difference in no-adaptation thresholds across
all orientations (F 1,36 = 4.00, p = 0.05, Figure 2B), with patients
exhibiting worse performance. Following subtraction of no-
adaptation thresholds for each orientation offset (Figure 2C),
there was still a group difference (ANOVA of adapt minus
no-adapt thresholds: F 1,36 = 4.36, p < 0.05). Two-tailed t -tests
revealed that this group difference was mostly driven by differ-
ences at 5˚ (t 36 = 2.1, p < 0.05), 10˚ (t 36 = 2.2, p < 0.05), and

45˚ (t 36 = 2.1, p < 0.05) offsets. The two groups had very simi-
lar difference of threshold (adapt minus no-adapt) values in the 0˚
offset condition (patients: 37 ± 3%; controls: 35 ± 2%, t 36 = 0.66,
p = 0.51). Because the groups did not differ for 0˚ offset following
subtraction of no-adaptation thresholds, we divided each partic-
ipant’s difference of threshold values (adapt minus no-adapt) in
the other offsets by the difference between adapt and no-adapt
thresholds in the 0˚ offset condition (Figure 2D). This normaliza-
tion step allowed us to focus on individual differences in the width
of the orientation tuning curve while controlling for variability
across participants in the height of the tuning curve at the origin.

Normalized thresholds were higher overall in the patient group
(ANOVA of normalized thresholds: F 1,34 = 5.44, p < 0.05). Two-
tailed t -tests for each orientation offset indicated that this group
difference was driven by a significant difference at an orientation
offset of 5˚ (t 34 = 2.16, p < 0.05) and a nearly significant difference
at the orientation offset of 10˚ (t 34 = 1.98, p = 0.056). There were
no significant group differences for the other orientation offsets
(15˚: t 34 = 0.78, p = 0.43; 45˚: t 34 = 1.63, p = 0.11). Normalizing
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FIGURE 3 | Width of orientation tuning as estimated by Gaussian fit.
Patients had broader mean orientation tuning than controls (p < 0.05). Error
bars indicate SEM for each group.

to the 0˚ offset also allowed us to quantify orientation selectivity
for each participant by fitting a single-parameter Gaussian model
(see Methods and Figure 2D). The mean width of the individ-
ual Gaussian fits was significantly larger in patients than controls
(two-tailed t -test: t 34 = 2.14, p < 0.05, Figure 3).

We also fit a two-parameter model to the data that included a
vertical offset parameter. Since the models are nested (the single-
parameter model is contained within the two-parameter model),
the reduction in error (difference between the model estimate and
the actual data) resulting from the addition of a parameter can be
quantified with an F-test (Glatting et al., 2007). We found that the
F value was smaller than 1 (F = 0.11), indicating that when the loss
of degrees of freedom resulting from the additional parameter is
taken into account, the two-parameter model does not describe the
data more accurately than the one-parameter model. In addition,
we compared the two models using the Akaike information crite-
rion (AIC), corrected for small sample size (AICc; Glatting et al.,
2007). This criterion was smaller for the single-parameter model,
also supporting the choice of this model for analysis of these data.
We therefore conclude that the two-parameter model failed to pro-
duce a significant improvement in the fit to the data,and we present
results from the more parsimonious single-parameter model.

Many physiological results suggest that orientation tuning of
individual neurons in the visual cortex is sharpened by GABA-
mediated inhibition (Sillito, 1975, 1979; Shapley et al., 2003; Li
et al., 2008). Therefore, we predicted that GABA levels in visual
cortex would negatively correlate with orientation tuning width.
To assess this prediction, we related the width of tuning obtained
from the Gaussian model fit to 1H-MRS measurements of visual
cortical GABA levels in 14 of the participants (seven patients and
seven controls). Note that this is only a small subset of the sub-
jects in the study and that these results therefore represent only
preliminary measurements. As expected, the correlation between
these two variables was negative (higher GABA levels were associ-
ated with narrower tuning for stimulus orientation), but this result
did not reach statistical significance (r = −0.4, pone-tailed = 0.076;
Figure 4).

FIGURE 4 | Correlation of orientation tuning with visual cortical GABA
levels. Orientation tuning curve widths for individual subjects are plotted as
a function of visual cortical GABA concentration (normalized to creatine
levels, GABA/Cr). There is a trend in the data toward a negative correlation
between orientation tuning width and the GABA/Cr ratio.

Finally, to assess possible effects of antipsychotic medications
on orientation tuning,we correlated chlorpromazine (CPZ) equiv-
alents with the estimates of orientation tuning width obtained
from the Gaussian model fit. This correlation accounted for
only 1% of the variance in the patient group (ptwo-tailed = 0.75),
suggesting that the width of orientation tuning is not signif-
icantly influenced by the patients’ drug treatments. In addi-
tion, we found no correlation between orientation tuning
width and the scores on any of the major domains of symp-
toms (reality distortion: r = −0.21, ptwo-tailed = 0.43; disorganiza-
tion: r = −0.28, ptwo-tailed = 0.29; negative symptoms: r = −0.22,
ptwo-tailed = 0.41).

DISCUSSION
Using behavioral methods, we demonstrated that patients with
SZ have broader orientation tuning curves than healthy controls.
We measured orientation tuning with an adaptation paradigm
(Fang et al., 2005). Many physiological studies have shown that
the contrast sensitivity of neurons in visual cortex decreases
with adaptation. Furthermore, this reduction in sensitivity is
most pronounced in neurons that are most responsive to the
adapting stimulus (reviewed in Kohn, 2007). At the perceptual
level, adaptation to oriented stimuli increases detection thresh-
olds for low-contrast targets that have the same orientation as
the adapter (Blakemore and Nachmias, 1971). In addition, the
orientation tuning of adaptation of visual responses measured
with fMRI in primary visual cortex matches the behavioral tuning
of adaptation (Fang et al., 2005). Taken together, these physi-
ological and behavioral results suggest that our psychophysical
measurements of orientation tuning of contrast detection thresh-
old (lower thresholds with increasing adapter–target orientation
offsets) reflect the tuning of orientation-selective neurons in early
visual cortex.

We determined detection thresholds for each subject in a no-
adaptation version of the target detection task, and this provided
a means of controlling for a number of confounds, including
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a generalized deficit in performance of cognitive tasks in the
patients (Knight and Silverstein, 2001). After subtracting these
no-adaptation thresholds from thresholds in the adaptation con-
dition and then normalizing to 0˚ adapter–target offset, we found
no significant group differences in normalized threshold for offsets
of 15˚ and 45˚. However, patients had elevated normalized thresh-
olds for offsets of 5˚ and 10˚, corresponding to the flanks of the
orientation tuning curve. This finding is important because group
differences in threshold at intermediate adapter–target offsets, but
not at the peak or tail of the orientation tuning curve, indicate
broader tuning for stimulus orientation in visual cortical neurons
in patients with SZ. To quantitatively assess this, we fit the behav-
ioral orientation tuning curve for each subject with a Gaussian
function, a model function that is commonly used to character-
ize orientation tuning of visual cortical neurons (Swindale, 1998).
This model has only one free parameter, corresponding to the
width of the tuning curve. Comparing the fit of a two-parameter
model, in which another parameter quantifies the amount of ver-
tical offset in the curve, indicated that the single-parameter model
best accounts for the data. Controlling for the generalized deficit
provides confidence that the increase in orientation tuning width
in the patients is not due to group differences in extraneous fac-
tors such as attention or motivation but is instead specific to the
orientation-selective adaptation process.

Previous studies have shown that in vivo GABA levels in the
brain are lower in patients with SZ (Goto et al., 2009; Yoon et al.,
2010) and that orientation tuning of visual cortical neurons is
shaped by GABA-mediated inhibition (Sillito, 1975, 1979; Shapley
et al., 2003; Li et al., 2008; Katzner et al., 2011). These findings sug-
gest that the broader orientation tuning we observed in patients
with SZ may be due to reduced visual cortical GABA levels. We
measured visual cortical GABA levels and found that, as predicted,
they were negatively correlated with our behavioral measure of
orientation tuning width. However, these results should be viewed
as preliminary, because our sample size in this analysis was limited
to a small subset of seven patients and seven control subjects. Fur-
thermore, though the correlation was in the predicted direction,
it was not statistically significant and must therefore be inter-
preted with caution. Future studies with larger samples will be
required in order to more completely investigate the role of GABA
in orientation tuning.

Recent results show that distinct subclasses of GABAergic neu-
rons differ in a number of response properties and may therefore
differentially affect receptive field properties of excitatory neu-
rons in visual cortex. Somatostatin (SOM)-expressing GABAergic
neurons typically have slow and orientation-specific responses
to visual stimulation (Ma et al., 2010). These response features
suggest that they may contribute to orientation-specific surround
suppression, which is thought to arise through orientation-specific
feedback projections to primary visual cortex from higher order
visual regions (Angelucci and Bressloff, 2006). On the other hand,
parvalbumin (PV)-expressing GABAergic neurons respond more
rapidly and do not exhibit selectivity for stimulus orientation (Ma
et al., 2010). Models of orientation selectivity in primary visual
cortical neurons suggest that some of the tuning results from an
interaction between tuned feedforward excitatory connections and
short-latency untuned inhibition (Shapley et al., 2003). Therefore,

the response properties of PV-expressing inhibitory neurons are
consistent with them playing a role in shaping orientation tuning
in early visual cortex.

Postmortem analysis of brain tissue has revealed reduced
mRNA expression of both SOM and PV in visual cortex of
patients with SZ (Hashimoto et al., 2008), consistent with reduced
orientation-specific surround suppression in SZ, as measured
behaviorally (Yoon et al., 2009, 2010), and broader orientation
tuning, as shown in the present study. However, orientation tun-
ing and surround suppression interact in a complex manner (Xing
et al., 2005; Okamoto et al., 2009), and recent findings suggest that
orientation tuning of visual cortical neurons may also be mediated
by tuned inhibition (Katzner et al., 2011).

The neurophysiological and pharmacological results on orien-
tation tuning in visual cortical neurons summarized above were
obtained from non-human animal models, while our behavioral
measures of orientation selectivity were collected from human
subjects. However, orientation tuning bandwidth values are highly
conserved in early visual cortex across mammalian species as
different as mice and macaque monkeys, despite dramatic inter-
species differences in other neuronal response properties such as
receptive field size, spatial and temporal frequency tuning, and
contrast sensitivity (Van den Bergh et al., 2010). This suggests that
the mechanisms underlying orientation tuning may be highly con-
served across many mammalian species, including humans. Our
results are therefore consistent with previous physiological reports
(Sillito, 1975, 1979; Li et al., 2008; Katzner et al., 2011) showing that
GABA-mediated inhibition plays an important role in generating
orientation selectivity in the visual system.

Although the correlations between orientation tuning and
GABA levels are in the expected direction, they are preliminary in
nature, as discussed above. Therefore, we consider other biological
mechanisms that could account for diminished orientation tuning
in patients with SZ. Based on the similarity between symptoms of
SZ and the psychological effects of NMDA receptor blockers such
as phencyclidine, some researchers have suggested that patients
with SZ may have a deficit in glutamatergic transmission through
NMDA receptors (Butler and Javitt, 2005; Javitt, 2007). Pharmaco-
logical blockade of NMDA receptors reduces response gain in cat
visual cortical neurons, while administration of NMDA increases
response gain (Fox et al., 1990). A decrease in neuronal response
gain could manifest as an increase in the width of orientation tun-
ing (Katzner et al., 2011), and patients with SZ exhibit a response
gain deficit in steady-state visual cortical evoked potentials (Butler
et al., 2005).

In conclusion, we have shown that tuning for visual stimu-
lus orientation is broader in patients with SZ, as predicted based
on reduced visual cortical GABA levels in these patients (Yoon
et al., 2010). Our analysis controlled for generalized performance
deficits and therefore demonstrates a specific perceptual deficit in
SZ that cannot be explained by higher-level cognitive factors such
as attention and memory. However, tuning to stimuli, categories
(Schwarzlose et al., 2008), and even abstract concepts (Piazza et al.,
2004; Gotts et al., 2011) has been described in many human brain
regions, suggesting that our results from orientation tuning may
generalize to other parts of the brain and to higher level abstract
representations.
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