New Physics in the Early LHC

Washington University in St.Louis

Washington University Department of Physics April 30, 2010

Chris Spitzer

Outline

- LHC -- An overview of the machine
- What happens when protons collide?
- Will the LHC be able to see the Higgs?
- Will the LHC be able to see supersymmetry?
- How about more exotic new physics?

Basic Quantities

Instantaneous Luminosity

$$\mathcal{L} = \frac{f_{\rm rev} N_p^2 n_b}{4\pi w_b^2} F$$

Typically measured in cm⁻²s⁻¹

Event Rate

$$R = \sigma_{
m proc} \mathcal{L}$$

Typically measured in number per second

 $1 \text{cm}^2 = 10^{24} \text{barns} = 10^{36} \text{pb} = 10^{39} \text{fb}$

Ideal LHC

Design parameters:

	Tevatron	LHC
Energy per Beam	0.98 TeV	7.0 TeV
# of Bunches	36	2808
Protons / bunch	2×1011	I×I011
Luminosity	3x10 ³² cm ⁻² s ⁻¹	1x10 ³⁴ cm ⁻² s ⁻¹
Magnetic Field	4.2 T	8.3 T
Temperature	4.2 K	I.9 K
Circumference	6.3 km	27.0 km

Ideal integrated LHC luminosity of ~100 fb⁻¹/yr

Beam Pipe

LHC Experiments

There are four detectors. All have been "ready" since 2008.

ATLAS	General purpose Higgs and supersymmetry.		
CMS	General purpose Higgs and supersymmetry.		
ALICE	Quark-gluon plasma.		
LHCb	B Mesons. Matter-antimatter asymmetry.		

The physics in this talk will focus on ATLAS and CMS.

Welding an Interconnection

0

LHC Timeline: Part 1

- 1994: Formal approval from CERN
- 1995: Technical Design Report completed
- 2002: Magnet production transferred to industry
- 2005: First magnet lowered
- 2007: Last magnet lowered, interconnections complete
- 2008: Construction complete, cool down ring
- Sept 10, 2008: First beam injection, splash events observed
- Sept 11-18, 2008: Beam studies and ramping in energy
- Sept 19, 2008: A problem develops...

LHC Timeline: Part 2

- October 2008 October 2009: Repairs, installation of new safety features, re-cooling of magnets
- October 26, 2009: First new beam injection tests
- November 20, 2009: Circulating beams in each direction
- November 23, 2009: First collisions, at 900 GeV c.m.e.
- November 30, 2009: Beams to 1.18 TeV each (world record)
- December 2009: Millions of collision events recorded
- February 3, 2010: Decision to cap at 3.5 TeV / beam for first run
- March 19, 2010: Beams ramp to 3.5 TeV each
- March 30, 2010: Collisions at 7 TeV c.m.e.
- Until ~Fall 2011: Collisions, beam studies, luminosity improvements
- Until ~December 2012:Technical stop for upgrades
- December 2012 and onward: Collisions at 14TeV

LHC Timeline: Recent

March-April: Work on beam overlap.

LHC Timeline: Recent

End of April: Work on "squeezed beams" to increase luminosity.

LHC Timeline: Luminosity Timeline

CMS: Integrated Luminosity 2010

Note: $nb^{-1} = 10^{-6} fb^{-1}$

LHC Timeline: Luminosity Timeline

Step	Comment	Turn around time	Max number bunches	Protons/Bunch	% nom. intensity	Min beta*	Peak Luminosity cm ⁻² s ⁻¹	Integrated Luminosity per month	events/X
1	Beam commissioning							First collisions	
2	<u>Pilot physics</u> , partial squeeze, gentle increase in bunch intensity, avaialbility low	Long	43	3 x 10 ¹⁰		4 m	8.6 x 10 ²⁹	100 - 200 nb ⁻¹	
3		5	43	5 x 10 ¹⁰		4 m	2.4 x 10 ³⁰	~ 1 pb ⁻¹	
4		5	156	5 x 10 ¹⁰	2.5	2 m	1.7 x 10 ³¹	~9 pb ⁻¹	
5a	No crossing angle - could at this stage push intensity see 5b	5	156	7 x 10 ¹⁰	3.4	2 m	3.4 x 10 ³¹	~18 pb ⁻¹	0.8
7	No crossing angle.	5	156	7 x 10 ¹⁰	3.4	2 m	4.9 x 10 ³¹	~26 pb ⁻¹	
8	50 ns - nominal crossing angle - aperture restricts squeezing further - note limited complement of bunches.	5	144	7 x 10 ¹⁰	3.1	2 m	4.4 x 10 ³¹	~23 pb ⁻¹	
9	50 ns	5	288	7 x 10 ¹⁰	6.2	2 m	8.8 x 10 ³¹	~46 pb ⁻¹	
10	50 ns*	5	432	7 x 10 ¹⁰	9.4	2 m	1.3 x 10 ³²	~69 pb ⁻¹	
(11)	50 ns*	5	432	9 x 10 ¹⁰	11.5*	2 m	2.1 x 10 ³²	~110 pb ⁻¹	

(an early plan for 3.5 TeV/beam energy)

Note final luminosity

Collisions: Proton Interactions

Protons are messy objects with unpleasant structure. Would like to simplify.

 f_i = Parton Distribution Function, the probability density of finding particle type i carrying fraction x_i of proton's momentum.

$$\hat{s} = x_1 x_2 s$$

Collisions: Proton Interactions

Collisions: Standard Cross-Sections

Collisions: Final State Products

Most unstable particles decay rapidly within detector. Can only observe the decay products.

Reconstruction of the underlying events is a challenging task.

Run Number: 152221, Event Number: 383185

Date: 2010-04-01 00:31:22 CEST

 $p_T(\mu+) = 29 \text{ GeV}$ $\eta(\mu+) = 0.66$ $E_T^{\text{miss}} = 24 \text{ GeV}$ $M_T = 53 \text{ GeV}$

W→µv candidate in 7 TeV collisions

(presumably uncalibrated)

Standard Model Higgs

- Scalar degree of freedom which emerges from spontaneous symmetry breaking of electroweak sector.
- Results from the simplest method of generating mass terms.
- Coupling to fermions is proportional to their mass.

SM Higgs: Current Constraints

SM Higgs: How to Make Them

SM Higgs: How to See Them

SM Higgs: Early LHC Problems

SM Higgs: Ideal ATLAS Observation

SM Higgs: ATLAS At Lower Energies

Combination of 0j and 2j, H to WW to II

SM Higgs: ATLAS At Lower Energies

SM Higgs: Early LHC Potential

- Dependent on rate at which luminosity increases
- If achieve target luminosity with ~I year of runtime, begin to generate significant results.
- Easiest areas to probe are in the Tevatron range.
- Most likely to confirm or slightly extend the region around Tevatron exclusion.
- Early LHC results will put LHC "on the map" of the Higgs search.

Supersymmetry

- Supersymmetry is theoretically motivated to address various problems in the Standard Model (naturalness of Higgs mass, dark matter, etc).
- Each SM particle has a heavier superpartner.
- Superpartners are produced in pairs.
- mSUGRA is a theoretically motivated version of SUSY that dramatically simplifies the parameter space.
- Characterized by 5 parameters: m_0 , $m_{1/2}$, A_0 , tan β , sign(μ)

Recent work by Baer et al, arXiv:1004.3594 (April 20, 2010)

Supersymmetry

Recent work by Baer et al, arXiv:1004.3594 (April 20)

- Focused on 7 TeV and <~ 2 fb⁻¹ of data
- Not an official ATLAS or CMS study
- Used established event generators for underlying events and backgrounds.
- Modeled detector response and efficiencies.
- Applied a series of optimized cuts.
- Assumed poor accuracy in energy measurements.

Supersymmetry

If gluino mass is below a TeV, production crosssections are significant.

Supersymmetry

Supersymmetry

The Z^I

- Gauge boson corresponding to a new U(I).
- A variety of models contain such a new gauge group: GUTs, string compactifications, composite Higgs models, etc.
- May mix with the Z of the standard model.
- Characterized by 3 parameters: m_{Z'}, g_Y, g_{BL.}

Recent work by Salvioni et al, arXiv:0909.1320v2 (Oct 30 2009)

The Z^I

Defining the couplings:

$$\mathcal{L} = -\frac{1}{4} F^{i}_{\mu\nu} F^{i\,\mu\nu} + \frac{1}{2} M^{2}_{i} A^{i\mu} A^{i}_{\mu} + A^{i}_{\mu} J^{\mu}_{i} + \dots \qquad i = \gamma, Z, Z'$$

$$J_{Z'^{0}}^{\mu} = \sum_{f} \left[g_{Y} Y(f) + g_{BL} \left(B - L \right)(f) \right] \overline{f} \gamma^{\mu} f$$

Tevatron/LHC

	(u,d)	u^c	d^c	(ν, e)	ν^c	e^{c}
T_{3L}	$(+\frac{1}{2},-\frac{1}{2})$	0	0	$(+\tfrac{1}{2},-\tfrac{1}{2})$	0	0
Y	$+\frac{1}{6}$	$-\frac{2}{3}$	$+\frac{1}{3}$	$-\frac{1}{2}$	0	+1
B-L	$+\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	+1	+1
$Q_{Z'}$	$\frac{1}{6}\widetilde{g}_Y + \frac{1}{3}\widetilde{g}_{BL}$	$-\frac{2}{3}\widetilde{g}_Y - \frac{1}{3}\widetilde{g}_{BL}$	$\frac{1}{3}\widetilde{g}_Y - \frac{1}{3}\widetilde{g}_{BL}$	$-\frac{1}{2}\widetilde{g}_Y - \widetilde{g}_{BL}$	\widetilde{g}_{BL}	$\widetilde{g}_Y + \widetilde{g}_{BL}$

Commonly-studied models:

"GUT value"
$$g_{Z'} = \sqrt{5/3} g'$$

The Z^I: Favored Region

The Z¹: Electroweak Constraints

Region allowed by electroweak precision tests, at 95% CL.

The Z^I:Tevatron Constraints

Region allowed by Tevatron direct searches, at 95% CL.

The Z^I: Early LHC Constraints

Region allowed by LHC direct searches with 7 TeV collisions.

The Z¹: Early LHC Constraints

Region excluded by LHC direct searches with, at 95% CL.

Red = Excluded by electroweak. Blue = Excluded by Tevatron Yellow = GUT-preferred band

The Z^I: Early LHC Constraints

The Z¹: Early LHC Potential

- LHC is sensitive to new U(I) gauge groups with large masses, even at lower collision energy and luminosity.
- Will be competitive with best current constraints (electroweak).
- Potential for discovery, particularly for masses around 800 GeV.

Hidden Valleys

- A hidden sector of particles that have carry charge from a "Valley" gauge group, but are SM singlets.
- Allows new light states.
- Communicate with the SM by a heavy messenger.
- High energy gets over the messenger particle and creates long-lived particles in the valley, which eventually decay back into SM particles.
- Distinctive displaced vertices in the LHC. May also produce large MET.
- A threshold-like signal -- very clear signals are soon as barrier is breached.

Long-time work by Matt Strassler, Kathryn Zurek, Dan Ventura and others.

 Using benchmark model of Hig Hidden Valleys: Production. decaying to non-interacting

Typical setup involves mixing of scalars through a vertex whose coupling is suppressed by a large scale.

Hidden Valleys: Decay in Detector

Hidden Valleys: Decay in Detector

Distribution of location of displaced vertices:

Hidden Valleys: Trigger Efficiencies

Increasing distance from beam pipe

Hidden Valleys: Trigger Efficiencies

Hidden Valleys: Early LHC Potential

- Distinctive signature.
- If such a sector exists with a typical messenger mass scale of ~TeV, shows up clearly in early LHC data.
- Not motivated by solving problems in the Standard Model -- makes Hidden Valley models less compelling.

Early LHC: Conclusions

- 18 months of running at 7 TeV, including beam commissioning.
- Reach for new physics depends on how rapidly LHC is able to achieve increased luminosity.
- **Higgs**: Significant integrated luminosity requirements. Not likely to achieve reach well beyond Tevatron until restart in 2012.
- **Supersymmetry**: Retains moderate reach into regions of mSUGRA parameter space for modest luminosities. Some discovery potential.
- Z^I: Good reach for heavy new gauge bosons, > 800 GeV. Some discovery potential.
- **Hidden Valleys**: Excellent reach for this less-well-motivated theory. Some discovery potential.