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1 Introduction

With lightweight, coreless flux motors, vehicles can possess individually driven wheels using a hub motor
mount topology, or some similar individually driven configuration. Such design is not completely unheard
of, as examples in Mercedes’s SLS AMG E-CELL and Audi’s R8 E-TRON can be found.

With this ability to define individual drive characteristics to each wheel, dubbed ”torque vectoring,”
vehicles exhibit excellent handling characteristics, as it can generate yaw moments by regulating the torque
at each wheel. The yaw moment can be controlled then not only by steering and differential braking, but
additionally through torque vectoring.

This project attempts to utilize the handling characteristics of hub motor mounted electric vehicles to
implement a torque vectored stability (yaw moment) control.

2 Modeling

2.1 Vehicle modeling

We utilize a 7 degree of freedom model of the vehicle dynamics with the following equations of motion. Note
that we do not model roll or weight transfer, thus, the normal force Fz at each wheel will not vary with time.

mẍ = (Fxfl + Fxfr) cos(δ) + Fxrl + Fxrr − (Fyfl + Fyfr) sin(δ) +mψ̇ẏ

mÿ = (Fyfl + Fyfr) cos(δ) + Fyrl + Fyrr + (Fxfl + Fxfr) sin(δ) −mψ̇ẋ

Izψ̈ = lf (Fxfl + Fxfr) sin(δ) + lf (Fyfl + Fyfr) cos(δ) − lr(Fyrl + Fyrr)

+
lw
2

(Fxfl − Fxfr) cos(δ) +
lw
2

(Fxrr − Fxrl) +
lw
2

(Fyfl − Fyfr) sin(δ)

Jwω̇fl = τm,fl − reffFxfl

Jwω̇fr = τm,fr − reffFxfr

Jwω̇rl = τm,rl − reffFxrl

Jwω̇rr = τm,rr − reffFxrr

To determine the proper lateral and longitudinal tire forces, we need to determine the lateral slip angle
and longitudinal slip ratio, as the force from a tire is a function of tire slip. We define α to be the tire slip
angle, and σ to be the tire slip ratio. Subscripts of f and r will therefore refer to front or rear, respectively.

The tire longitudinal slip ratio in fact comprises a piecewise function, chosen based upon acceleration
or braking, to avoid a singularity. We choose to simply use one, since we assume our car is in and stays in
motion. The longitudinal slip for an individual tire is defined then as

σ =
reffω − ẋ

ẋ
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Here ω is a placeholder variable for any of the individual wheel speeds.
The tire lateral slip angle is given based upon front or rear location, as the steering angle δ will affect it.

The slip angles are given by

αf = δ − ẏ + lf ψ̇

ẋ

αr = − ẏ − lrψ̇

ẋ

With these definitions for lateral and longitudinal slip angles and ratios, we then require a tire model
utilizing these parameters and effectively mapping the slip to the force. For this project, we choose to utilize
the ”Magic Tire” formula, which is represented as

F (z) = D sin (C arctan (B(1 − E)z + E arctan(Bz)))

z refers to the slip input (ratio or angle in degrees), and the constants B,C,D and E are chosen by fitting
curves.

For our vehicle model, we assume the center of gravity to be exactly at the middle of the car, which is not
completely unrealistic in this specific case, as the battery and motor weights can be easily dispersed evenly
through the car.

2.2 Motor modeling

The motor is modeled in a simplified fashion which can be generalized across different motor topologies: DC
brushed, DC brushless, 3-phase permanent magnet (axial and radial flux), etc. The motor is viewed to have
a series resistance and a back-emf generator.

The motor is assumed to have a torque constant and back-emf generation constant, that is, the torque
from the motor τm is proportional to the current through the motor armature i, and the back-emf e is
proportional to the motor angular speed ω. This relation is realized in the set of equations

τm = kti , e = keω

where kt is the torque constant, and ke is the back-emf constant.
The electric dynamics equations follow from the circuit, and are formulated as

V − irm − e = 0

where V is our control, the voltage across the motor, and rm is the resistance in the motor armature. From
our assumed relations above, we substitute to find

V − τm
kt
rm − keω = 0

Rearranging,

τm = kt
V − keω

rm

In practical implementation, varying the voltage V is done through PWM following some sort of con-
verter/inverter. However, for the intent of this project, it is assumed that the voltage applied can be
arbitrarily chosen.
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3 Control design

3.1 Upper level controller for vehicle stability

We use a driver model where the driver’s input (the steering angle) is used as our reference for desired yaw
rate. We assume the vehicle has Ackermann steering geometry, as well has neutral steer. Thus, the curvature
of the turn, modeled as a circle with radius R, is given as

1

R
=
δ

L

where δ is the steering angle and L is the wheelbase of the car. The desired yaw rate will then be given as

ψ̇des =
ẋ

R
=
ẋ

L
δ

Since we are dealing with a highly nonlinear system, we choose to use sliding mode control as opposed
to linear control methods. We choose our sliding surface s to be

s = ψ̇ − ψ̇des

Utilizing this, we find our control law of the form

Mψ =
Iz

1 + cos(δ)

(
− lf
Iz

(Fyfl + Fyfr) cos(δ) +
lr
Iz

(Fyrl + Fyrr) − ηs

)
where Mψ is the yaw moment torque we desire to generate.

3.2 Lower level controller for motor torque generation

From our wheel dynamics, we can infer the necessary torque we need to drive at each wheel. Since we can
define Mψ in terms of longitudinal wheel forces, we can determine the torques we need to apply at each
wheel. We assume that the driver has some input torque (determined by the throttle pedal position), and
we modulate about that torque. We choose the torques to be differential from left to right, and are

τl = τ0 +
reff
lw

Mψ

τr = τ0 −
reff
lw

Mψ

where τ0 is the driver torque input. We drive the left side motors to τl and conversely drive the right side
motors to τr to generate our desired yaw moment torque.

The actual torque is estimated from the current through the motor armature, which is typically measured
using a series sense resistance or magnetic hall effect sensor. This current is then scaled by the torque constant
to obtain our estimated torque.

We chose a proportional-integral (or PI) controller to reach our torque setpoint. The control law has the
form

u(t) = kp(τm,des − τm,est) + ki

∫ t

0

(τm,des − τm,est)dt

where u(t) is our control signal (i.e. the applied voltage V ), τm,des is our desired torque, and τm,est is our
estimated (sensed) torque.

Since the electric dynamics converge much faster than that of the physical constants, we assume for the
simulation that τm = τm,des. In doing this, we also generalize our control algorithm for not only electric
motor drive, but for any torque vectoring drive system.
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4 Simulation results

4.1 Torque vectoring verification

To verify that our all wheel drive in wheel electric motor drive system can in fact affect the yaw moment, we
utilized a simulation where we can independently define torques on any given wheel. By choosing torques,
we can create certain trajectories without using a steering input (setting δ = 0). The simulation provided
the following results for a yaw moment generated purely by differential torques.
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Figure 1: Vehicle trajectory generated with δ = 0 and torque vectoring

With an inertial coordinate initialized at (x, y) = (0, 0), we can see that utilizing a saturated torque input
on two wheels and a zero torque input on the other two can cause a significant change in yaw moment.
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4.2 Control verification

We use a driver model that has a constant steering angle δ and constant torque input τ0. For our initial
controller with sliding parameter η = 20 and µ = 0.9,
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Figure 2: ψ̇des tracking for dry conditions, µ = 0.9
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Figure 3: Inertial position for controlled µ = 9 conditions

We notice an oscillatory response around our desired tracking. However, this is minuscule and should
not matter much. In dry conditions we can see the response is tidy and tracks rather well.

For the same controller but on wet conditions (µ = 0.5), we can see the stability controller come into
play.
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Figure 4: ψ̇des tracking for wet conditions, µ = 0.5
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Figure 5: Inertial position for controlled µ = 5 conditions

Here, we can see the oscillations have larger magnitude than those of the dry road, which is expected as
the tires cannot provide as much cornering forces to drive the yaw rate back as fast.
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Finally, let us consider icy conditions, where roads have been iced over (µ = 0.2). Here, we can note that
the stability controller works as a large improvement.
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Figure 6: ψ̇des tracking for icy conditions, µ = 0.2
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Figure 7: Inertial position for controlled µ = 2 conditions

The stability controller does a relatively excellent job tracking the desired yaw rate on ice. The oscillations
again grow, but it is expected even more such that on icy conditions close to no grip will be available. The
torque vectoring allows for the desired yaw rate to be approached even while acceleration, even on ice. Of
course, there is some physical maximal friction limit for the tires, but the torque vectoring allows for a
beneficial utilization.
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5 Conclusions

By utilizing torque vectoring, stability can be achieved (to a certain degree) in acceleration and cornering. In
conjunction with differential braking, torque vectoring allows for stability in both acceleration and braking
phases.

While the primary intent of this project was determining the mobility and stability control of differential
in wheel drive vehicles, the stability control has been simplified such that it is applicable to any form of
torque vectoring. Likewise, while a controller was designed for torque control of an electric motor, it was not
utilized in simulation due to additional overhead and complexity. Further research should be pursued to see
this additional complexity and its effect on the stability of the system, although it is speculated to not have
a very large affect. Similarly, other paths to pursue include using a more descriptive model, as the vehicle
model utilized does not take roll or pitch dynamics into account.

6 Appendix A: MATLAB m-code

% Stephen Chen

% ME131 project m-file

% Stability control for torque vectored in-hub electric motor vehicles

close all;clear all;clc;

Parameters

vehicle parameters

car.m = 2000; % car mass, kg

car.g = 9.81; % gravity acceleration

car.reff = 0.3; % tire effective radius, m

car.jw = 3; % rotor and tire moment of inertia, kg m^2

car.iz = 5000; % car moment of inertia about cg, kg m^2

car.lf = 1.3; % distance from front tires to cg, m

car.lr = 1.3; % distance from rear tires to cg, m

car.lw = 1.5; % track width, m

car.mu = 0.9; % tire-road friction coefficient

car.fz = 0.25*car.m*car.g; % normal force for one tire

car.nu = 20; % sliding control parameter

% single motor parameters

motor.rm = 0.5; % motor armature resistance, ohms

motor.kt = 0.9; % motor torque constant, N-m / amp

motor.ke = 0.005; % motor back-emf constant, V / (rad/s)

% initial conditions

x0.xd = 0; % initial longitudinal velocity

x0.yd = 0; % initial lateral velocity

x0.psid = 0; % initial yaw rate

x0.omega = [x0.xd / car.reff;x0.xd / car.reff;

x0.xd / car.reff;

x0.xd / car.reff]; % initial wheel speed

% simulation parameters
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t = (0:0.01:10)’;

delta = [t 0.005.*ones(length(t),1)]; % steering angle, radians (scalar)

tau = [t 20.*ones(length(t),1) 100.*ones(length(t),1)

20.*ones(length(t),1)

100.*ones(length(t),1)];

% motor torques, N-m

(4x1 vector: [fl,fr,rl,rr]’)

Simulation for verifying torque vectoring affecting yaw moment

sim(’dynamics_2.mdl’);

Data analysis for verificiation of torque vectoring

Inertial position, x-y

figure;

plot(x_i.signals.values,y_i.signals.values);

xlabel(’x (m)’);

ylabel(’y (m)’);

title(’Inertial position’);

Simulation for control

tau_ref = [t 100.*ones(length(t),1)];

sim(’dynamics.mdl’);

Controller analysis

Psi des tracking

figure;

hold on

plot(psi.time,psi.signals.values);

plot(psi_des.time,psi_des.signals.values,’k:’);

xlabel(’Time (s)’);

ylabel(’Yaw rate (rad/s)’);

title(’Yaw rate tracking for \mu = 0.9’);

legend(’Actual yaw rate’,’Desired yaw rate’,’Location’,’southeast’);

hold off

figure;

plot(x_i.signals.values,y_i.signals.values);

xlabel(’x (m)’);

ylabel(’y (m)’);

title(’Inertial position’);

Changing friction

car.mu = 0.5;

sim(’dynamics.mdl’);
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figure;

hold on

plot(psi.time,psi.signals.values);

plot(psi_des.time,psi_des.signals.values,’k:’);

xlabel(’Time (s)’);

ylabel(’Yaw rate (rad/s)’);

title(’Yaw rate tracking for \mu = 0.5’);

legend(’Actual yaw rate’,’Desired yaw rate’,’Location’,’southeast’);

hold off

figure;

plot(x_i.signals.values,y_i.signals.values);

xlabel(’x (m)’);

ylabel(’y (m)’);

title(’Inertial position’);

car.mu = 0.2;

sim(’dynamics.mdl’);

figure;

hold on

plot(psi.time,psi.signals.values);

plot(psi_des.time,psi_des.signals.values,’k:’);

xlabel(’Time (s)’);

ylabel(’Yaw rate (rad/s)’);

title(’Yaw rate tracking for \mu = 0.2’);

legend(’Actual yaw rate’,’Desired yaw rate’,’Location’,’southeast’);

hold off

figure;

plot(x_i.signals.values,y_i.signals.values);

xlabel(’x (m)’);

ylabel(’y (m)’);

title(’Inertial position’);
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