
Problem 1.

What will the Scheme interpreter print in response to the last expression in each of the
following sequences of expressions? Also, draw a “box and pointer” diagram for the result
of each printed expression. If any expression results in an error, circle the expression
that gives the error message. Hint: It’ll be a lot easier if you draw the box and pointer
diagram first !
(define f (list 2 3))
(define g (append f f))
(set-car! g f)
g

(let ((x (list 1 2 3)))
(set-car! x (list ’a ’b ’c))
(set-car! (cdar x) ’d)
x)

(define x 3)
(define m (list x 4 5))
(set! x 6)
m

(let ((x (list 1 2 3)))
(set-car! (cdr x) 4)
x)

(let ((x (list 1 2 3)))
(set-cdr! (car x) 4)
x)

(let ((x (list 1 2 3)))
(set-cdr! x 4)
x)

(let ((x (list 1 2 3)))
(set-car! (cdr x) x)
x)

(define x (list 1 ’(2 3) 4))
(define y (cdr x))
(set-car! y 5)
x

(define a ((lambda (z) (cons z z)) (list ’a)))
(set-cdr! (car a) ’(b))

1

a

(define r (list ’a ’b ’c))
(define s (list ’d ’e ’f))
(define p (append r s))
(set-car! (cdr p) 8)
r

(define e (list 1 2 3))
(set-cdr! (cdr e) ’())
e

(define f (list 1 2 3))
(set-car! (cdr f) ’())
f

(let ((x (list 1 2 3)))
(set-cdr! (cdr x) 4)
x)

(let ((x (list 1 2 3)))
(set! (car x) 4)
x)

(let ((x (list 1 2 3)))
(set-car! (cdr x) (cddr x))
x)

(let ((x (list 1 2 3)))
(set-cdr! (cdr x) x)
x)

(let ((x (list 1 2 3)))
(set-cdr! (cdr x) (cddr x))
x)

(let ((x (list 1 2 3)))
(set! x (cdr x))
x)

(let ((x (list 1 2 3)))
(set-car! x (cddr x))
x)

(let ((x (list 1 2 3)))

2

(set-car! (cdr x) (cdr x))
x)

(let ((x (list 1 2 3)))
(set-car! x (cdr x))
x)

(let ((x (list 1 2 3)))
(set-cdr! (cdr x) (car x))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! (cdr x) (caddr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cdr x) (cddr x))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! (cddr x) (cadr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cddr x) (cons (cadr x) (cdddr x)))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! x (cdr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cddr x) (cdr x))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! (cdr x) (cadr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! x (cdr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cdr x) (cadr x))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! (cddr x) (cdr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cddr x) (cadr x))
x)

3

(let ((x (list 1 2 3 4)))
(set-car! (car x) (cadr x))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! (cdr x) (cdddr x))
x)

(let ((x (list 1 2 3 4)))
(set-cdr! (cdr x) (car x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cddr x) (cddddr x))
x)

(let ((x (list 1 2 3 4)))
(set-car! (cddr x) x)
x)

(let ((x (list 1 2 3 4)))
(set-cdr! x (caddr x))
x)

(let ((x (list 1 ’(2 3) 4)))
(set-car! x (caddr x))
x)

(let ((x (list 1 (list 2 3) 4)))
(set-car! (cadr x) (car x))
x)

(let ((x (list 1 (2 3) 4)))
(set-car! x (cadr x))
x)

(let ((x (list (list 1 2) (list 3 4))))
(set-cdr! (cdr x) (cdar x))
x)

(let ((x (list (list 1 2) (list 3 4))))
(set-car! (car x) (cadr x))
x)

(let ((x (list (list 1 2) (list 3 4))))
(set-car! (cdr x) (cdar x))
x)

(let ((x (list (list 1 2) (list 3 4))))
(set-cdr! (cdar x) (cadr x))
x)

4

Object-Oriented Programming

Problem 2.
(define-class (scoop flavor)

; maybe (parent (cone)) -- see part (A) below
)

(define-class (vanilla)
(parent (scoop ’vanilla)))

(define-class (chocolate)
(parent (scoop ’chocolate))

(define-class (cone)
; maybe (parent (scoop)) -- see part (A) below
(instance-vars (scoops ’()))
(method (add-scoop new)
(set! scoops (cons new scoops)))

(method (flavors)
(map see (B) below scoops)))

(A) Which of the parent clauses shown above should be used?

The scoop class should have (parent (cone)).

The cone class should have (parent (scoop)).

Both.

Neither.

(B) What is the missing expression in the flavors method?

(C) Which of the following is the correct way to add a scoop of vanilla ice cream to a cone
named my-cone?

(ask my-cone ’add-scoop ’vanilla)

(ask my-cone ’add-scoop vanilla)

(ask my-cone ’add-scoop (instantiate ’vanilla))

(ask my-cone ’add-scoop (instantiate vanilla))

5

Problem 3.

(a) Here are some situations that might be simulated using OOP. In each case we want to
know whether class A should be a parent of class B (answer “Yes” or “No”):

• We’re simulating a kitchen. Class A: silverware. Class B: fork.

• We’re simulating a shopping mall. Class A: food court. Class B: restaurant.

• We’re simulating a library. Class A: bookshelf. Class B: book.

(b) In each of the following situations, should the given variable be a class variable or an
instance variable (answer “Class” or “Instance”)?

• In the shoe class, the total number of shoes in the world.

• In the refrigerator class, the maximum safe temperature.

• In the person class in the adventure game, the person’s favorite color.

Problem 4.

We are going to invent a simplified adventure game. In this version, there are no things.
People are represented as objects; places are just symbols. All you can do is move from
one place to another; there are no things and no interactions with other people.

The connections between places are represented in a table, as in data-directed program-
ming. That is, to indicate that you can get from Evans to PSL by going east, we’ll say
(put ’Evans ’east ’PSL)

Your job is to define the person class, that takes an initial place as its argument. The
resulting person object accepts messages like east and returns the new location of the
person:
> (define Brian (instantiate person ’BH-Office))
brian
> (ask Brian ’down)
60a-lab
> (ask Brian ’east) ;; a request for which there is no PUT defined
cant-get-there-from-here
> (ask Brian ’down)
Evans

6

You do not have to write put, get, ask, or anything else that you’ve seen in the book
or handouts. Assume that all the needed connections between rooms have already been
established with put.

Problem 5.

We are going to simulate a Compact Disc (CD) player using object-oriented programming.
Use the OOP notation as described in the course reader.

(a) Define a CD object class. Every CD contains the following information: a number
identifying the recording, and a list of numbers, one per song, indicating where on the CD
that song begins. (For our purposes we can think of positions on the disc in terms of the
number of seconds of music that come before it.) To instantiate a CD we’ll provide two
arguments, the ID number and the timing list:
(define With-the-Beatles (instantiate cd 102574 ’(0 102 293 542 ...)))

The timing list contains one extra number at the end, which is the position at which an
additional song would begin if there were one. In other words, this extra number indicates
the total time of the CD.

A CD object accepts three messages: id asks for the ID number; songs asks for the number
of songs recorded on the disc; and index takes a number as its argument and returns the
corresponding number from the timing list. (If the argument is zero it returns the first
element of the list, and so on.)
> (ask With-the-Beatles ’index 2)
293

(b) Now define a CD-player class. A good simulation would be very complicated, mainly
because once a CD is playing, the object continues to do work even if it gets no more
messages. But we’ll only simulate a couple of features. In particular, we won’t actually
play any songs!

The load message takes a CD object as its argument and “loads” that CD into the player.
The returned value is the ID number of the CD. The effect of loading a CD is that later
messages to the player refer implicitly to the loaded CD.

The length message takes a song number as its argument, and returns the length of that
song (the difference between its position and the one after it).

The goto message takes a song number as its argument, and returns the position at which
that song begins. (A more realistic simulation would actually move the laser beam to that
position and begin playing, but we’ll just return the position.)

7

> (define my-player (instantiate CD-player))
> (ask my-player ’load With-the-Beatles)
102574
> (ask my-player ’goto 3)
542
> (ask my-player ’length 1)
191 ;; this is 293 − 102

Problem 6.

We are going to modify the adventure game project by inventing a new kind of place,
called a hyperspace. Hyperspaces are just like other places, connected to neighboring non-
hyperspace places in specific directions, except that they behave strangely when someone
enters one: The person who entered is sometimes magically transported to another hyper-
space. (The hyperspaces must all know about each other, but they are not connected to
each other through exits. Each hyperspace is connected to specific neighbors, just as any
place is.)

Your job is to define the hyperspace class. The class must be defined in a way that
allows you to know all of its instances. When a person enters a hyperspace, half the time
nothing special should happen, but half the time the hyperspace should ask the person to
go-directly-to some randomly chosen other hyperspace.

You may use the following auxiliary procedures if you wish:
(define (coin-heads?) (= (random 2) 1))

(define (choose-randomly stuff)
(nth (random (length stuff)) stuff))

Do not modify any existing class definitions.

Problem 7.

In an Adventure game, there are often magical things which have some special effect when
a person takes them. For example, the magic wand moves you to the cavern, or the gold
ring increases your strength.

Define a magic-thing class that’s just like the thing class except that it takes an extra
instantiation variable, a procedure of one argument. When a person takes the thing, that
procedure should be invoked with the person as its argument.

For example:

8

(define magic-wand
(instantiate magic-thing

’wand
(lambda (person) (ask person ’go-directly-to cavern))))

Problem 8.

We’re going to add to the adventure game a new kind of person, called a wizard. Wizards
can move around in the same way that other people do, but they also remember every
place they’ve ever seen. Once a wizard has been someplace, he can return to that place
directly, by magic.

The wizard class will accept a revisit message, whose argument is the name of a place
where the wizard has already been. If the argument is valid, the wizard will go directly to
the place with that name. If not, print an error message.

Implement the wizard class in OOP notation.

Here’s an abbreviated definition of the person class, to jog your memory:
(define-class (person name place)

(method (person?) #t)
(method (look-around) ...)
(method (exits) (ask place ’exits))
(method (go direction) ...)
(method (go-directly-to new-place) ...)
...)

Problem 9.

We are going to prepare a simulation of an FM car radio. To simplify the problem we’ll
restrict our attention to tuning, not to volume or balance or anything else a radio does.
This radio features digital tuning. There are six buttons that can be preset to particular
stations; for manual tuning, there are up and down buttons that move to the next higher
or lower frequency. (FM frequencies are measured in megahertz and have values separated
by 0.2: 88.1, 88.3, 88.5, 88.7, 88.9, 90.1, etc.) To simplify the problem further, we’ll ignore
the boundary problem of what to do when you’re at the lowest assigned FM frequency and
try to go down below that frequency. Just pretend you can keep going up or down forever.

Use the OOP language (define-class and so on).

(a) Create a button object class that accepts these messages:

9

set-freq! 93.3 sets the button’s remembered frequency
freq returns the remembered frequency

The initial frequency should be zero (because the buttons don’t have settings initially).

(b) Create a radio object class that has six buttons, numbered 0 through 5, and accepts
these messages:
set-button! 3 sets button 3 to the radio’s current frequency
push 3 sets the radio to button 3’s frequency
up sets the radio to the next higher frequency
down sets the radio to the next lower frequency
freq returns the radio’s current frequency

The radio’s initial frequency should be 90.7 MHz. Points to remember: Your radio has
to use six of your button objects; you needn’t check for invalid argument values in the
methods. Hint: Give your radio a list of six buttons, and use list-ref to get the one
you want.

Problem 10.

Define an object class called password-protect. The purpose of the class is to allow an
object to be “hidden” so that a password is needed to send it messages. Here’s how it
works. Suppose we have this class definition:
(define-class (counter)

(instance-vars (count 0))
(method (next)
(set! count (+ count 1))
count))

In order to make a password-protected counter, we want to be able to do this:
> (define ppc (instantiate password-protect

(instantiate counter) ’exotic))
PPC
> (ask ppc ’next)
ERROR: Password incorrect
> (ask (ask ppc ’exotic) ’next)
1
> (ask (ask ppc ’exotic) ’next)
2

In this example, exotic is the password for the protected counter. When sent this password
as a message, the object ppc returns the underlying counter object, which can then be sent
its own messages.

10

Problem 11.

(a) Suppose that bh is a person object, in the place bh-office. What does each of these
do?
(ask (ask bh ’place) ’name)

(ask (ask bh ’name) ’place)

(b) Here are some situations that might be simulated using oop. In each case we want to
know whether class A should be a parent of class B (answer Yes or No):

• We’re simulating a rock and roll group. Class A: musician. Class B: drummer.

• We’re simulating an automobile. Class A: automobile. Class B: wheel.

• We’re simulating an office. Class A: file cabinet. Class B: file folder.

(c) For each of the following, should it be a class variable or an instance variable?

• In the file cabinet class, the number of files in a file cabinet.

• In the AC Transit local bus class, the price of a bus ticket.

• In the restaurant class in the adventure game, how many people have eaten at this
restaurant.

Assignment, State, and Environments

Problem 12.

We want this behavior:
> (define m1 (make-marble ’red))
> (define m2 (make-marble ’blue))
> (define m3 (make-marble ’yellow))
> (m1)
(yellow blue red)

Whenever any marble is invoked, it returns a list of all the marble colors. Which of the
following definitions is correct:

11

____ (define make-marble
(lambda (color)

(let ((all-colors ’()))
(lambda ()

(set! all-colors (cons color all-colors))
all-colors))))

____ (define make-marble
(let ((all-colors ’()))

(lambda (color)
(lambda ()

(set! all-colors (cons color all-colors))
all-colors))))

____ (define make-marble
(lambda (color)

(let ((all-colors ’()))
(set! all-colors (cons color all-colors))
(lambda ()

all-colors))))

____ (define make-marble
(let ((all-colors ’()))

(lambda (color)
(set! all-colors (cons color all-colors))
(lambda ()

all-colors))))

Problem 13.

Suppose we want to write a procedure prev that takes as its argument a procedure proc
of one argument. Prev returns a new procedure that returns the value returned by the
previous call to proc. The new procedure should return #f the first time it is called. For
example:
> (define slow-square (prev square))
> (slow-square 3)
#f
> (slow-square 4)
9
> (slow-square 5)
16

Which of the following definitions implements prev correctly? Pick only one.
______ (define (prev proc)

(let ((old-result #f))

12

(lambda (x)
(let ((return-value old-result))

(set! old-result (proc x))
return-value))))

______ (define prev
(let ((old-result #f))
(lambda (proc)

(lambda (x)
(let ((return-value old-result))
(set! old-result (proc x))
return-value)))))

______ (define (prev proc)
(lambda (x)
(let ((old-result #f))

(let ((return-value old-result))
(set! old-result (proc x))
return-value))))

______ (define (prev)
(let ((old-result #f))
(lambda (proc)

(lambda (x)
(let ((return-value old-result))
(set! old-result (proc x))
return-value)))))

Problem 14.

In this problem you’re going to write a piece of a simplified Adventure game, not using our
OOP notation, just in regular Scheme. We are concentrating on the behavior of people,
so a place will just be represented as a room number. You are given a function next-room
that takes as arguments a room number and a direction; its result is the room where you
end up if you move in the given direction from the given room:

==> (next-room 14 ’South)
9

means that room 9 is south of room 14. You are to write a procedure make-player that
creates a player object. This object (i.e., a procedure) should accept messages like South
and should move from its current position in the indicated direction. It should remember

13

the new location as local state, and should also return the new location as its result. The
argument to make-player is the initial room:
==> (define Frodo (make-player 14))
FRODO
==> (Frodo ’South)
9
==> (Frodo ’South)
26

You must make each move relative to the result of the previous move, not starting from
the initial room each time!

Problem 15.

The textbook provides the following definition of memoization:
(define (memoize f)

(let ((table (make-table)))
(lambda (x)

(let ((previous-result (lookup x table)))
(or previous-result

(let ((result (f x)))
(insert! x result table)
result))))))

...but Louis Reasoner has lost his book! He tries to define memoize as the following:
(define memoize(define memoize(define memoize ;; this line changed (no parens or f)

(let ((table (make-table)))
(lambda (f)(lambda (f)(lambda (f) ;; this line added

(lambda (x)
(let ((previous-result (lookup x table)))

(or previous-result
(let ((result (f x)))

(insert! x result table)
result)))))))

Louis takes the usual fib procedure:
(define (fib x)

(if (< x 2)
x
(+ (fib (- x 1))

(fib (- x 2)))))

He then tests his version of memoize by memoizing fib exactly as in the book:

14

(define memo-fib
(memoize (lambda (x)

(if (< x 2)
x
(+ (memo-fib (- x 1))

(memo-fib (- x 2)))))))

Louis tries out his code, and traces through it. To his surprise, it seems to work! His
memo-fib computes the answer in O(n) time! Ben Bitdiddle looks at his code and com-
ments: “Louis, your code has a major flaw in it...”

Does Louis’ memoize give wrong answers?

Yes No

If yes, explain why, and give an example using Louis’ memoize that will return an incorrect
result.

If no, explain what flaw Ben means, and give an appropriate example.

For full credit, your explanation must be no more than 20 words. If you give
two explanations, we will grade the less correct one.

Problem 16.

Fill in the blanks with the response to the indicated expressions. The answers are 11, 121,
1001, and 1111 but not necessarily in that order!

(Hint: You shouldn’t have to draw environment diagrams to figure this out. In each case,
ask yourself: Is A a class variable or an instance variable? Is B a class variable or an
instance variable?)
(define make-foo1 (define make-foo3

(let ((a 1)) (let ((a 1)
(lambda () (b 1))

(let ((b 1)) (lambda ()
(lambda () (lambda ()

(set! a (* a 10)) (set! a (* a 10))
(set! b (+ b a)) (set! b (+ b a))
b))))) b))))

(define foo1-1 (make-foo1)) (define foo3-1 (make-foo3))

15

(define foo1-2 (make-foo1)) (define foo3-2 (make-foo3))
(foo1-1) (foo3-1)
(foo1-1) (foo3-1)
(foo1-2) ==> (foo3-2) ==>

(define make-foo2 (define make-foo4
(let ((b 1)) (lambda ()
(lambda () (let ((a 1)

(let ((a 1)) (b 1))
(lambda () (lambda ()

(set! a (* a 10)) (set! a (* a 10))
(set! b (+ b a)) (set! b (+ b a))
b))))) b))))

(define foo2-1 (make-foo2)) (define foo4-1 (make-foo4))
(define foo2-2 (make-foo2)) (define foo4-2 (make-foo4))
(foo2-1) (foo4-1)
(foo2-1) (foo4-1)
(foo2-2) ==> (foo4-2) ==>

Problem 17.

Consider the following OOP class:
(define-class (foo value)

(class-vars (foos ’()))
(initialize (set! foos (cons self foos))))

Don’t forget that the OOP system provides methods value and foos that return the values
of the corresponding variables.

Your job is to implement a similar behavior in ordinary Scheme, by defining a procedure
make-foo that works as shown in the following example:
> (define f1 (make-foo 3))
> (define f2 (make-foo 4))
> (f1 ’value)
3
> (f2 ’value)
4
> (f1 ’foos)
(<procedure> <procedure>) ; however Scheme prints procedures f2 and f1
> (map (lambda (foo) (foo ’value))

(f1 ’foos))
(4 3)

16

Note that we invoke f1 and f2 directly; you are not using ask or instantiate from the
OOP language. Note also that all objects created by make-foo will give the same answer
to the message foos.

Problem 18.

(a) Draw the environment diagram showing the situation after both of the following ex-
pressions have been evaluated:
(define x 17)

(define f
(let ((x 4))
(lambda (y)

(print x)
(set! x y)
y)))

(b) Show how the environment is changed when the following expression is evaluated. Also,
what is printed out and what is returned?
(f 5)

(c) Suppose we evaluated (f 5) in a Scheme that had dynamic scoping. What is printed
out and what is returned?

Problem 19.

Draw an environment diagram showing the result of defining the following procedure. (The
purpose of the procedure is that each time it’s called, it returns #t if it has already been
called with the same argument value.)
(define duplicate?

(let ((values ’()))
(lambda (test)

(cond ((memq test values) #t)
(else (set! values (cons test values))

#f)))))

Problem 20.

17

On the next page are five environment diagrams. The very large letter within each global
frame is the name of that diagram. For each of the following three instruction sequences,
identify the environment diagram that results after the completion of the sequence. Note:
a single diagram might match more than one instruction sequence. You may find it helpful
to draw your own diagrams on scrap paper. You may tear off the next page if that’ll make
it easier for you; there is nothing on that page that you need to turn in, unless you’ve
written on the back of it.

[For review purposes, we are not providing the diagrams – just draw a diagram for each of
the examples!]

1.
(define (thing x)

(let ((a 5) (b 6))
(lambda ()

(* a (+ b x)))))
(define fred (thing 3))
(fred)

2.
(define (thing x)

(let ((a 5))
(lambda (b)

(* a (+ b x)))))
(define fred (thing 3))
(fred 6)

3.
(define (thing x)

(lambda (a)
(let ((b 6))

(* a (+ b x)))))
(define fred (thing 3))
(fred 5)

Drawing environment diagrams

Problem 21.

Draw the environment diagram resulting from evaluating the following expressions, and
show the result printed by the last expression where indicated.

18

> (define (bar x)
(let ((z (lambda (b) (* x b)))

(c x))
(lambda (x)
(set! c (z (* c x)))
c)))

> (define foo (bar 4))

> (foo 3)

Problem 22.

Draw the environment diagram that results from the following interactions, and fill in the
blank with the value printed:
>(define a 8)

>(define b 9)

> (let ((a 3)
(f (lambda (b) (+ a b))))

(f 5))

Problem 23.

Draw the environment diagram resulting from evaluating the following expressions, and
show the results printed by the expressions where indicated.
> (define make-foo

(let ((y 4))
(lambda ()
(set! y (* y 2))
(let ((z y))

(lambda ()
(set! z (+ z 1))
z)))))

> (define foo1 (make-foo))

19

> (define foo2 (make-foo))

> (foo1)

> (foo2)

Problem 24.

Draw the environment diagram resulting from evaluating the following expressions, and
show the result printed by the last expression where indicated.
> (define x 4)

> (define (baz x)
(define (* a b) (+ a b))
(lambda (y) (* x y)))

> (define foo (baz (* 3 10)))

> (foo (* 2 x))

Problem 25.

Here are some Scheme expressions. Fill in the blanks to indicate the appropriate return
values and draw the final environment diagram.

> (define y 5)(define y 5)(define y 5)

> (define (agent x)(define (agent x)(define (agent x)
(let ((y 0))(let ((y 0))(let ((y 0))
(lambda ()(lambda ()(lambda ()

(x)(x)(x)
y)))y)))y)))

> (define mission(define mission(define mission
(agent (lambda () (set! y (+ y 1)))))(agent (lambda () (set! y (+ y 1)))))(agent (lambda () (set! y (+ y 1)))))

> (mission)(mission)(mission)

20

> (mission)(mission)(mission)

> yyy

Problem 26.

Draw the environment diagram resulting from evaluating the following expressions, and
show the result printed by the last expression where indicated.

> (define x 2)(define x 2)(define x 2)

> (define (f x)(define (f x)(define (f x)
(if (even? x)(if (even? x)(if (even? x)

(f (- x 1))(f (- x 1))(f (- x 1))
(lambda (y) (+ x y))))(lambda (y) (+ x y))))(lambda (y) (+ x y))))

> (define g (f 4))(define g (f 4))(define g (f 4))

> (g 15)(g 15)(g 15)

Problem 27.

Draw the environment diagram that results from the following interactions, and fill in the
blanks with the values printed:
> (define (inc var)

(set! var (+ var 1)))

> (define x 5)

> (define foo
(let ((x 7)

(z 100))
(lambda (y)
(inc x)
(set! z (* z x))

21

(+ z y))))

> (foo 10)

> x

> (foo 20)

Problem 28.

Draw the environment diagram for the situation after the following definition and invoca-
tion have been evaluated:
(define maximizer

(let ((value 0))
(lambda (arg)

(if (> arg value)
(set! value arg))

value)))

(define foo (maximizer 6))

Problem 29.

Draw the environment diagram resulting from evaluating the following expressions, and
show the result printed by the last expression where indicated.
> (define foo

(lambda (x f)
(if f

(f 7)
(foo 5 (lambda (y) (+ x y))))))

> (foo 3 #f)

22

List mutation

Problem 30.

This question is about an abstract data type for sorted lists. A sorted list is just like a
regular list, except that the elements are always kept in sorted order.

(a) We want to be able to use sorted lists this way:
> (define slist1 (make-empty-sorted-list))
> (define slist2 (make-empty-sorted-list))

> ; sorted->regular converts a sorted list into a regular Scheme list
> (sorted->regular slist1)
()

> ; insert! inserts its first argument into its second argument, in sorted
> ; order.
> (insert! 1 slist1)
> (insert! 5 slist2)
> (sorted->regular slist1)
(1)
> (sorted->regular slist2)
(5)
> (insert! 3 slist2)
> (insert! 7 slist2)
> (sorted->regular slist2)
(3 5 7)

We define this constructor:
(define (make-empty-sorted-list)

’())

With this constructor, can we define insert! so that it behaves as shown in the example
above? Check the best answer:

Yes, insert! could be defined so that everything works in the example above.

No, insert! can’t be defined to work as it does in the example above because
there is nothing to mutate.

No, insert! can’t be defined to work as it does in the example above because
both sorted lists will share the same memory.

No, insert! can’t be defined to work as it does in the example above because

23

mutation can only put new entries at the beginning of the list.

(b) We want to be able to use sorted lists this way (note that the initial list creation is
done differently):
> (define slist1 the-empty-sorted-list)
> (define slist2 the-empty-sorted-list)

> (sorted->regular slist1)
()

> (insert! 1 slist1)
> (insert! 5 slist2)
> (sorted->regular slist1)
(1)
> (sorted->regular slist2)
(5)
> (insert! 3 slist2)
> (insert! 7 slist2)
> (sorted->regular slist2)
(3 5 7)

We use this definition:
(define the-empty-sorted-list

(cons ’sorted-list ’()))

With this definition, can we define insert! so that it behaves as shown in the example
above? Check the best answer:

Yes, insert! could be defined so that everything works in the example above.

No, insert! can’t be defined to work as it does in the example above because
there is nothing to mutate.

No, insert! can’t be defined to work as it does in the example above because
both sorted lists will share the same memory.

No, insert! can’t be defined to work as it does in the example above because
mutation can only put new entries at the beginning of the list.

Problem 31.

Draw a “box and pointer” diagram for the following Scheme expressions:

a (1 point).

24

(let ((x (cons ’() ’())))
(set-car! x x)
(set-cdr! x x)
x)

b (2 points).

(define (funny! x)
(if (null? x)

’()
(let ((temp (cdr x)))
(funny! temp)
(set-cdr! x (car x))
(set-car! x temp)
x))

(funny ’(1 2)))

c (2 points). Write a Scheme expression to construct the following structure.

.-----------------------------.
| |
V |

--------- --------- |
| | | | | /| |

-------->| | | ----------->| | | / | |
| | | | | | |/ | |
--|------ --|------ |
| ^ | |
| | | |

25

| | | |
V | V |

------|-- --------- |
| | | | | | | |
| | | | | | | | --------’
| | | | | | | |
--|------ --|------
| |
| |
| |
V V

A B

Problem 32.

a) (2 pts) What will Scheme print in response to the following expressions? Assume that
they are typed in sequence (we’ve done the first two for you!). Although they will not be
graded, you will find it helpful to draw the corresponding box and pointer diagrams. If an
expression produces an error message, you may just say “error”; you don’t have to provide
the exact text of the message.
> (define x (cons 1 ’()))
x
> (define y (cons 2 3))
y
> (sequence (set-cdr! x y) x)

> (sequence (set-car! y (car x)) x)

> (sequence (set-cdr! (cdr x) (cdr x)) y)

> (sequence (set-car! (car x) 5) (car x))

b) (3 pts) For this part, you are to criticize the implementation of the function new-set!,
which is supposed to behave exactly like set!. (Hint: there are two major screwups.)
(define (new-set! x y)

(if (and (pair? x) (pair? y))
(sequence

(set-car! x (car y))
(set-cdr! x (cdr y)))

(set! x y)))

Illustrate your answer by giving expressions or sequences of expressions using new-set!
that result in output different from what would be obtained using set!.

26

Problem 33.

Write make-alist!, a procedure that takes as its argument a list of alternating keys and
values, like this:
(color orange zip 94720 name wakko)

and changes it, by mutation, into an association list, like this:
((color . orange) (zip . 94720) (name . wakko))

You may assume that the argument list has an even number of elements. The result of your
procedure requires exactly as many pairs as the argument, so you will work by rearranging
the pairs in the argument itself. Do not allocate any new pairs in your solution!

Problem 34.

Write merge!, a procedure that takes two arguments, each of which is a list of numbers in
increasing order. It returns a combined, ordered list of all the numbers:
> (merge! (list 3 5 22 26) (list 2 7 10 30))
(2 3 5 7 10 22 26 30)

Your procedure must do its work by mutation, changing the pointers between pairs to
create the new combined list. The original lists will no longer exist after your procedure
is finished.

Note: Do not allocate any new pairs in your solution. Rearrange the existing pairs.

27

Problem 35.

The following expressions are typed, in sequence, at the Scheme prompt. Circle #t or #f
to indicate the return values from the calls to eq?.
(define a (list ’x))
(define b (list ’x))
(define c (cons a b))
(define d (cons a b))

(eq? a b) => #t #f

(eq? (car a) (car b)) => #t #f

(eq? (cdr a) (cdr b)) => #t #f

(eq? c d) => #t #f

(eq? (cdr c) (cdr d)) => #t #f

(define p a)
(set-car! p ’squeegee)
(eq? p a) => #t #f

(define q a)
(set-cdr! a q)
(eq? q a) => #t #f

(define r a)
(set! r ’squeegee)
(eq? r a) => #t #f

Problem 36.

We would like to save memory in our data structures by ensuring that there are no dupli-
cated top-level elements (that is, elements that are equal but not identical) in a list. For
example, if we have the list
(x (a b) ((y) (y)) (a b) w)

then we’d like to modify the list so that the two copies of (a b) are not only equal? but
also eq?. But we don’t care about the two copies of (y); they’re not top-level elements.

Before and after pictures:

28

Complete the following definition of make-eq! so that it takes a list as its argument, and
turns duplicate sublists into identical ones by mutation. It should return the modified
list. The argument list after the procedure call should be equal? to the list before the
procedure call, but possibly not eq?. Do not allocate any new pairs! Don’t eliminate
duplicated elements of elements, just top-level ones.

Note: (member ’c ’(a b c d)) returns (c d), not #t.
(define (make-eq! lst)

(if (not (pair lst))
lst
(let ((dup (member (car lst) (make-eq! (cdr lst)))))

Problem 37.

Write deep-subst!, a procedure that takes three arguments, two of which are words and
the third of which is any list structure (anything made of pairs). It should mutate the list
structure so that any occurrence of the first argument, however deep in sublists, is replaced
by the second argument. Examples:
> (deep-subst! ’foo ’baz (list (cons ’hello ’goodbye) (cons ’moby ’foo)))
((hello . goodbye) (moby . baz))

> (deep-subst! ’a ’x (list (list ’a ’b ’c) (list ’b ’a ’d)
(list ’f ’a ’b)))

((x b c) (b x d) (f x b))

Do not allocate any new pairs in your solution!

Problem 38.

Write deep-map!, a procedure that takes an arbitrary list structure, applies a given func-
tion to each leaf, and modifies the argument list to replace each leaf with the value returned
by the function. For example:
> (define x (list (list 3 4) 5 (list) (list (list 6))))
x
> x
((3 4) 5 () ((6)))

29

> (deep-map! square x)
((9 16) 25 () ((36)))
> x
((9 16) 25 () ((36)))

For the purposes of this problem, a “leaf” is anything that isn’t a pair or the empty list.

Do not allocate any new pairs in your solution! Modify the existing list structure.
(You are not, of course, responsible for any pairs that might be allocated by the function
you are given as argument, like square in the example above.)

Problem 39.

This problem is about binary trees, in which the nodes are represented in the form indicated
by these selectors and constructor:

(define datum car)
(define left-branch cadr)
(define right-branch cddr)

(define (make-tree datum left right)
(cons datum (cons left right)))

The empty tree is represented by the empty list.

(a) Complete the implementation of this abstract data type by writing the three mutators
for binary tree nodes.

(b) Binary search trees provide efficient searching only if they are well-balanced, with
about as many nodes in the left branch as in the right branch (at every level). There
are many algorithms for allowing new data to be inserted into a binary search tree while
ensuring that the tree remains balanced. Some of those algorithms involve a technique
called rotation, in which some elements of the tree are rearranged while preserving the
binary search tree order requirements. The pictures below show the general idea (with
triangles representing subtrees) and a specific example, in which the subtree whose root
datum is 15 is rotated.

30

Write the procedure rotate! that takes a tree node as its argument and rotates the tree
rooted at that node, by mutation. The pair at the head of the given tree (that is, the pair
you are given as the argument) must still be the head of the resulting tree, because some
higher-up tree may point to that pair.

Note: Do not allocate any new pairs in your solution. Modify the existing pairs. Also,
respect the data abstraction.

Vectors

Problem 40.

Suppose there are N students taking a midterm. Suppose we have a vector of size N,
and each element of the vector represents one student’s score on the midterm. Write a
procedure (histogram scores) that takes this vector of midterm scores and computes
a histogram vector. That is, the resulting vector should be of size M+1, where M is the
maximum score on the midterm (it’s M+1 because scores of zero are possible), and element
number I of the resulting vector is the number of students who got score I on the midterm.

For example:
> (histogram (vector 3 2 2 3 2))
#(0 0 3 2) ;; no students got 0 points, no students got 1 point,

;; 3 students got 2 points, and 2 students got 3 points.
> (histogram (vector 0 1 0 2))
#(2 1 1) ;; 2 students got 0 points, 1 student got 1 point,

;; and 1 student got 2 points.

Do not use list->vector or vector->list.

Note: You may assume that you have a procedure vector-max that takes a vector of
numbers as argument, and returns the largest number in the vector.

Problem 41.

Write a program rotate! that rotates the elements of a vector by one position. The
function should alter the existing vector, not create a new one. It should return the
vector. For example:
> (define v (make-vector 4))
> (vector-set! v 0 ’a)
okay

31

> (vector-set! v 1 ’b)
okay
> (vector-set! v 2 ’c)
okay
> (vector-set! v 3 ’d)
okay
> v
#(a b c d)
> (rotate! v)
#(d a b c)

Concurrency

Problem 42.

Choose the answer which best describes each of the following:

(a) You and a friend decide to have lunch at a rather popular Berkeley resturant. Since
there is a long line at the service counter, each group of people entering the restaurant
decide to have someone grab a table while someone else waits in the line to order the food.
This sounds like a good idea, so your friend sits down at the last free table while you get in
line. Unfortunately, the resturant stops taking orders when there are no tables available,
and you have to wait in line for the people ahead of you. This is an example of

incorrect answer

deadlock

inefficency (too much serialization)

unfairness

none of the above (correct parallelism)

(b) After you finally get to eat lunch, you and your friend decide to go to the library to
work on a joint paper. The library has a policy that students who enter the library must
open their backpacks to show that they are not bringing food into the library. They have
several employees doing backpack inspection, so there are several lines for people waiting
to be inspected. However, today there was a bomb threat, and so the inspectors also use a
handheld metal detector to examine the backpacks. Although there are several inspectors,
the library only has one metal detector. This is an example of

32

incorrect answer

deadlock

inefficency (too much serialization)

unfairness

none of the above (correct parallelism)

(c)While you are working on the paper, your friend decides to do some research for your
paper and leaves for a few hours while you continue writing. This is an example of

incorrect answer

deadlock

inefficency (too much serialization)

unfairness

none of the above (correct parallelism)

Problem 43.

When people want to get married in a hurry, they can go to Las Vegas where marriage
licenses are issued quickly. We wish to serialize the marriage ceremony in Las Vegas.

(a) When a man and a woman wish to get married they are each placed in the back of a
queue. The man is placed in the man-queue and the woman is placed in the woman-queue.
There they wait until they are dequeued by a Justice of the Peace, who is allowed to
perform marriages.
;;Using queues from Week 9, page 262 in SICP

(define man-queue (make-queue))
(define woman-queue (make-queue))

(define (vegas-goers man woman)
(insert-queue! man man-queue) ;;Put man at back of queue
(insert-queue! woman woman-queue)) ;;Put woman at back of queue

(define (insert-queue! queue item) ;;This procedure is from SICP
(let ((new-pair (cons item ’())))

33

(cond ((empty-queue? queue)
(set-front-ptr! queue new-pair)
(set-rear-ptr! queue new-pair)
queue)
(else
(set-cdr! (rear-ptr queue) new-pair)
(set-rear-ptr! queue new-pair)
queue))))

Is there any need to add serializers in the vegas-goers procedure? In other words, is the
following implementation dangerous? Check the best answer:
(parallel-execute (lambda () (vegas-goers ’Paul ’Linda))

(lambda () (vegas-goers ’John ’Yoko)))

No, because men and women are contained in different queues.

Yes, because we could get incorrect results.

Yes, to avoid deadlock between the two queues for men and women.

No, because the insertion algorithm for queues has no critical section.

(b) There are several Justices of the Peace in Las Vegas. Only Justices can perform
marriages, so only Justices can access the two queues. To perform the ceremony a Justice
must dequeue a man and a woman from their respective queues. Here is the code:
(define (justice name)

(let ((groom (front-queue man-queue)) ;;Groom at from of his queue
(bride (front-queue woman-queue))) ;;Bride at front of her queue

(delete-queue! man-queue) ;;Remove from queues
(delete-queue! woman-queue)
(marry groom bride))

(define (front-queue queue) ;; Procedures from SICP
(if (empty-queue? queue)

(error "FRONT called with an empty queue" queue)
(car (front-ptr queue))))

(define (delete-queue! queue)
(cond ((empty-queue? queue)

(error "DELETE! called with an empty queue" queue))
(else (set-front-ptr! queue (cdr (front-ptr queue)))

queue)))

We need to serialize the justice procedure. Alyssa P. Hacker suggests we use a single
serializer for the entire Justice procedure, as follows:

34

(define s (make-serializer))
(define (justice name)

((s (lambda () (let ((groom (front-queue man-queue))
(bride (front-queue woman-queue)))

(delete-queue! man-queue)
(delete-queue! woman-queue)))))

(marry groom bride)
(display "Congratulations!"))

Here are some arguments regarding Alyssa’s strategy. Check the best answer:

This is inefficient. Since only deleting from a queue actually changes the contents
of the queue, we do not have to serialize until we call delete-queue!.

This is incorrect. Because queues, not justices, are responsible for adding and
removing people, all serialization should take place within the queue ADT.

This can cause deadlock. Because let is syntactic sugar for a procedure and
procedure invocation, the let form in the justice procedure is actually two instructions.

This is correct.

Problem 44.

What are the possible values of variable a after each of the following parallel executions?
If deadlock is a possibility, say so.

(a)
(define a 2)
(parallel-execute

(lambda () (set! a (list a a)))
(lambda () (set! a (list a 1))))

(b)
(define a 2)
(define s (make-serializer))
(parallel-execute

(s (lambda () (set! a (list a a))))
(s (lambda () (set! a (list a 1)))))

(c)
(define a 2)
(define s (make-serializer))

35

(define t (make-serializer))
(parallel-execute

(s (lambda () (set! a (list a a))))
(t (lambda () (set! a (list a 1)))))

Problem 45.

(a) Suppose we say
> (define baz ’hi)
> (define s (make-serializer))

> (parallel-execute (s (lambda () (set! baz (word baz baz))))
(s (lambda () (set! baz ’bye))))

What are the two possible values of baz after this finishes?

(b) Now suppose that we change the example to leave out one invocation of the serializer,
as follows:
> (define baz ’hi)
> (define s (make-serializer))

> (parallel-execute (s (lambda () (set! baz (word baz baz))))
(lambda () (set! baz ’bye)))

What are all of the possible values of baz this time?

Problem 46.

(a) Suppose we say
> (define baz 10)
> (define s (make-serializer))

> (parallel-execute (s (lambda () (set! baz (/ baz 2))))
(s (lambda () (set! baz (+ baz baz)))))

What are the possible values of baz after this finishes?

(b) Now suppose that we change the example to leave out the serializer, as follows:
> (define baz 10)

> (parallel-execute (lambda () (set! baz (/ baz 2)))

36

(lambda () (set! baz (+ baz baz))))

What are all of the possible values of baz this time?

Problem 47.

Question 2 (3 points):

(a) Suppose we say
> (define baz 10)
> (define s (make-serializer))

> (parallel-execute (s (lambda () (set! baz 7)))
(s (lambda () (set! baz (+ baz baz)))))

What are the possible values of baz after this finishes?

(b) Now suppose that we change the example to use a separate serializer for each process,
as follows:
> (define baz 10)
> (define s (make-serializer))
> (define t (make-serializer))

> (parallel-execute (s (lambda () (set! baz 7)))
(t (lambda () (set! baz (+ baz baz)))))

What are the possible values of baz this time?

Problem 48.

We have defined these three numeric variables and four procedures:
(define r 10)
(define w 10)
(define rw 10)

(define (foo) (set! rw (+ r r)))
(define (bar) (set! rw (- rw r)))
(define (garply) (set! w (+ rw rw)))
(define (buzz) (set! w (+ r 7)))

Notice that in these procedures r is what is known as a “read-only” variable because its
value is only read from memory and never altered. w is a “write-only” variable because its
value is only set, not examined. rw is both read and written.

37

For parts (a) and (b), we want to run the four procedures foo, bar, garply, and buzz in
parallel, perhaps using serializers, with no other processes running.

(a) What is the minimum number of distinct serializers necessary to ensure that r, rw,
and w all have correct values after our code executes? (Circle one.)
0 1 2 3 4+

(b) Which (if any) of the procedures do not need to be serialized? (Circle all that
apply.)
foo bar garply buzz

(c) What are the possible final values of r, rw, and w after only the following code executes
(from the starting value 10 for all variables; note that foo isn’t included):
(define protector (make-serializer))

(parallel-execute (protector bar)
(protector garply)
(protector buzz))

r values: rw values:

w values:

(d) What are the possible final values for r, rw, and w after only the following code executes
(from the starting value 10 for all variables; note that foo isn’t included):
(parallel-execute bar garply buzz)

r values: rw values:

w values:

Problem 49.

(a) Suppose we do this:
> (define x 3)

> (parallel-execute (lambda () (set! x 100))
(lambda () (set! x (+ x x))))

Assume that setting a variable to an integer value, looking up the value of a variable, and
adding two integers are each atomic operations. What are all the possible values of x after
the call to parallel-execute?

(b) What are all possible values of x after the call to parallel-execute if we do the
following instead?
> (define x 3)

38

> (define x-protector (make-serializer))

> (parallel-execute (x-protector (lambda () (set! x 100)))
(x-protector (lambda () (set! x (+ x x)))))

Problem 50.

In the book, make-serializer is implemented using a mutex. Make-mutex is implemented
using the atomic test-and-set! operation, like this:
(define (make-mutex) ; from SICP page 312

(let ((cell (list false)))
(define (the-mutex m)

(cond ((eq? m ’acquire)
(if (test-and-set! cell)

(the-mutex ’acquire))) ; retry
((eq? m ’release) (clear! cell))))

the-mutex))

Instead, suppose that you are given serializers as a primitive capability; write make-mutex
using serializers (and not using test-and-set!) to provide concurrency control.

39

