—_

CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

CS61A

Week 10 Now The Mutants Attack (v1.0)

That Which Look The Same May Not Be The Same (Thy eyes are devil’s idle play-
things)

Now is a good time to bring up what you’ve noticed all along - there are different degrees of ”sameness” in Scheme.
Or, more specifically, things can be equal?, and things can be eq?. Now you're finally old enough to know the truth.

equal? is used to compare values. We say two things are equal? if they evaluate to the same thing. For example,
(equal? ’(2 3 4) ’(2 3 4)) returns #t, since both are lists containing three elements: 2, 3 and 4. This is the
comparison method that you’re all familiar with.

eq?, however, is used to compare objects. We say two things are eq? if they point to the same object. For those of
you proficient in C, you may think that x eq? y if x and y are both pointers holding the same address values.

Or, in short, (eq? (2 3 4) ’(2 3 4)) returns #f, because, though the two lists hold the same values, they are
not the same list!

Consider these:

(define x (list 1 2 3))
(define y (list 1 2 3))
(define z x)

Then (eq? x y) returns #f but (eq? z x) returns #t. How many lists are created total?

Teenage Mutant Ninja... err, Schemurtle (you try to do better)

Mutation refers to changing a data structure. Since our preferred data structure are pairs, naturally, then, to
perform mutation on pairs, we have set-car! and set-cdr!. Note that set-car! and set-cdr! are NOT special
forms! That’s why you can execute things like (set-car! (cdr 1lst) (+ 2 5)), with all arguments to set-car!
being expressions that need to be evaluated.

To write procedures that deal with lists by mutation (rather than by constructing entirely new lists like we’ve done so
far), here’s a possible approach: first, try to do the problem without using mutation, as you normally would. Then,
whenever you see cons used in your procedure, think about how you can modify the procedure to use set-car! or
set-cdr! instead.

Do not confuse set-car! and set-cdr! with set!. set! is used to change the value of a variable, or, what some
symbol in the environment points to. set-car! and set-cdr! are used to change the value inside a cons pair, and
thus to change elements and structure of lists, deep-lists, trees, etc. They are not the same!

Also, in working with lists, you’ll often find that you use set-car! to change elements of the list, and set-cdr! to
alter the structure of the list. This shouldn’t be a surprise - recall that in a list, the elements are the car of each pair,
and the subsequent sublists are the cdr. But don’t be fool into thinking set-car! is always for element changes and
set-cdr! is always for structural changes; in a richer data structure, either can be used for anything.



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

QUESTIONS:

1. Personally, I think set-car! and set-cdr! are pretty useless too; we can just implement them using set!.
Check out my two proposals for set-car! Do they work, or do they work?

(a) (define (set-car! thing val)
(set! (car thing) val))

(b) (define (set-car! thing val)
(let ((thing-car (car thing)))
(set! thing-car val)))

2. I'd like to write a procedure that, given a deep list, destructively changes all the atoms into the symbol
wei:
> (define 1s ’(1 2 (3 (4) 5)))

> (glorify! 1s) ==> return value unimportant
> 1s ==> (wei wei (wei (wei) wei))

Here’s my proposal:

(define (glorify! L)
(cond ((atom? L) (set! L ’wei))
(else (glorify! (car L))
(glorify! (cdr L)))))

Does this work? Why not? Write a version that works.




CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

3. Write a procedure, remove-first! which, given a list, removes the first element of the list destructively.
You may assume that the list contains at least two elements. So,
> (define 1s (1 2 3 4))
> (remove-first! 1ls)

==> return value unimportant
> 1s ==> (2 3 4)

And what if there’s only one element?




CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 4

Just When You Were Getting Used to Lists...

Finally we are now introducing to you what many of you already know — arrays. You've already seen them countless
times in lecture, so I won’t go into them in detail. Roughly, an array is a contiguous block of memory - and this
is why you can have ”instantaneous”, random access into the array, instead of having to traverse down the many
pointers of a list. Recall the vector operators:

(vector [elementl] [element2] ...) ;; works just like (list
[elementl] ...) (make-vector [num]) ;; creates wector of length num,
all unbound (make-vector [num] [init-vall) ;; creates wvector of
length num set to init-val (vector-ref v i) ;; w[i]; gets the ith
element of the vector v (vector-set! v i val) ;; w[i] = wal; sets
the ith element of the vector v to val (vector—length v) ;; returns
the length of the vector v

Beyond using different operators, there are a few big differences between vectors and lists:

Vectors of length N Lists of length N
e a contiguous block of memory cells e many units of two cells linked together by
pointers

e O(1) for accessing any item in the vector

. . i e O(N) for accessing an item
e O(N) for adding an item to the middle of

the vector, since you have to move the rest e O(1) for inserting an item anywhere in the
of the vector down list, assuming we have a pointer to the loca-
e O(N) for growing a vector; note that you ton
have to reallocate another, larger block of e O(1) for growing a list; just add it at the
memory! beginning or the end (if you have a pointer
to the end)

e add 1 to index to get to the next element

) e cdr down a list
e you may have "unbound” elements in the

vector; that is, length of vector is not the e length of list is exactly the number of ele-
same as length of your valid data ments you've put into the list

Note the last bullet. With lists, you allocate a new piece of memory (using cons) when you need to add an element,
but with vectors, you allocate all the room you need first, even if you don’t have enough data to fill it up.

Also, just as you can have deep lists, where elements of a list may be a list as well, you can also have ”deep” vectors,
often referred to as n-dimensional arrays, where n refers to how ”deep” the deep vector is. For example, a table
would be a 2-dimensional array - a vector of vectors. Note that, unlike in, say, C, each vector in your 2D table does
NOT have to have the same size! Instead, you can have variable-length rows inside the same table. In this sense,
the vectors of Scheme are more like the arrays of Java than C.



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

QUESTIONS:

1. Write procedure (sum-of-vector v) that adds up the numbers inside the vector. Assume all data fields
are valid numbers.

2. Write procedure (insert-at! v i val); after a call, vector v should have val inserted into location i.
All elements starting from location i should be shifted down. The last element of v is disgarded.

STk> a ==> #(cs6la is cool #[unbound] #[unbound])
STk> (insert-at! 2 ’very) ==> okay

STk> a ==> #(cs6la is very cool #[unbound])

3. Write procedure (vector-double! v). After a call, vector v should be doubled in size, with all the
elements in the old vector replicated in the second half. So,

STk> a ==> #(1 2 3 4)
STk> (vector-double! a) ==> okay

STk> a ==> #(1 2 3 4 1 2 3 4)




