
 1

CS61A Discussion Notes: Week 11: The Metacircular Evaluator
By Greg Krimer, with slight modifications by Phoebus Chen (using notes from Todd Segal)

What is the Metacircular Evaluator?

It is the best part of the best class at Cal. An evaluator—also called an interpreter—is a program
written in some language L1 that evaluates expressions in language L2. STk is an interpreter; it is
written in C (L1) and it evaluates Scheme (L2). If L1 and L2 happen to be the same, the
interpreter is metacircular. Hence, the metacircular evaluator is a Scheme program that evaluates
Scheme expressions. Although our implementation language L1 will stay Scheme, over the next
few weeks L2 will change. Chapter 4 of the book shows how to implement in Scheme first a
Scheme interpreter, then an optimizing Scheme interpreter, a lazy Scheme interpreter, a
nondeterminisitic interpreter and a query interpreter. In the fourth project, you will complete an
implementation of a Logo interpreter in Scheme.

A few weeks ago, we learned that to evaluate a Scheme expression, we must draw an
environment diagram. This is how STk evaluates Scheme. This is also how our evaluator will
evaluate Scheme—by drawing the environment diagram in code. But first, we need to talk about
the representation of a Scheme program used by the metacircular evaluator.

Programs as data

A Scheme program is a perfectly good list. Take the squar e function:

(def i ne (squar e x) (* x x))

All you need to do is quot e the definition and you’ve got a proper list of three elements:

The MCE uses the r ead primitive to read in Scheme expressions; r ead is the Scheme parser, a
function that takes raw input and transforms it into a form that is easer to handle for the
interpreter. If r ead sees a symbol, string or number, it just returns it. If it sees a combination—
anything in parentheses—it constructs a list to represent the combination. The r ead function
does not perform any evaluation1; it just returns a data structure—most often a list—that
represents the expression.

1 It does convert some Scheme expressions into their true form. For example, r ead is responsible for expanding any
single-quotes into calls to the quot e special form:

STk> (r ead)
' ' ' h ; ; user i nput
(quot e (quot e (quot e h))) ; ; r et ur n val ue of READ

def i ne

squar e x * x x

 2

This means our evaluator can pick apart a Scheme program using regular list operators!

1. Draw the box and pointer diagram for the Scheme expression (do not de-sugar it):

(l et ((a 3) (b 4))
 (set ! a (+ a b))
 a)

Mc-eval and Mc-Apply: Overview

As mentioned earlier, the meta-circular evaluator merely implements the rules for drawing
environment diagrams. Let's review those rules:

1. Self-Evaluating - Just return their value
2. Symbol - Return closest binding, if none error.
3. Special forms:

o Define - bind var name to evaluation of rest in current frame
o Lambda - Make a procedure, write down params, and body - Do not evaluate
o Begin - Evaluate each expression, return value of last one
o set! - find var name, eval expression and set var to the return value
o if - eval predicate and then either the true-part or false-part.

4. Procedures
o Primitive's - Apply by magic...
o User-defined - Make a new frame, extend to proc's frame, bind arguments to

formal parameters, evaluate the body of the procedure in the new frame.
5. Syntactic Sugar - Get rid of it (untranslate)!

Now all we have to do is translate this into a working Scheme evaluator. Notice how only two
things ever happen: we evaluate something, or we apply a procedure to arguments. Because of
this we only really need two procedures. The procedure that evaluates expressions (eval), and a
procedure to apply an operator to arguments in a new environment (appl y). THATS IT! Here’s a
simplified/easier-to-read version of the code in the book:

(def i ne (scheme)
 (pr i nt ' | > |)
 (pr i nt (eval (r ead) t he- gl obal - envi r onment))
 (scheme))

(def i ne (eval exp env)
 (cond ((sel f - eval uat i ng? exp) exp) ; ; Rul e 1
 ((symbol ? exp) (l ookup exp env)) ; ; Rul e 2
 ((speci al - f or m? exp) (do- somet hi ng- speci al exp env)) ; ; Rul e 3
 (el se (appl y (eval (car exp) env) ; ; Rul e 4
 (map (l ambda (e) (eval e env)) (cdr exp))))))

(def i ne (appl y op ar gs) ; ; Rul e 4. . . ver bat i m

 3

 (i f (pr i mi t i ve? op)
 (do- magi c op ar gs)
 (eval (body op)
 (ext end- envi r onment (f or mal s op)
 ar gs
 (op- env op)))))

The book expands out the speci al - f or m? clause in eval to handle each special form. It
also uses more data abstraction for the application of procedures (for example, usi ng l i s t -
of - val ues instead of map in the eval clause handling procedure application). But the code
above represents the fundamental components of the meta-circular evaluator. Let’s now get into
the details…

mc-eval: dispatching on the expression type

The heart of the MCE lies in the mutually recursive relationship between the mc- eval and mc-
appl y functions. The book defines these as eval and appl y , but we renamed them so as not
to overwrite the STk primitives with the same names. The mc- eval function takes a Scheme
expression (a list!) and an environment and evaluates the expression in the environment.

In order to evaluate a Scheme expression, mc- eval has to first determine its type and then “do
the right thing” for that type. Since Scheme uses prefix notation and a Scheme program is a list,
the car of that list will contain the operator of the expression. For instance:

STk> (car ‘ (+ 1 2 3))
+ ; ; t he oper at or i s +
STk> (car ‘ (def i ne (squar e x) (* x x)))
def i ne ; ; oper at or i s def i ne

The metacircular evaluator refers to the operator of a Scheme expression as a tag and defines a
function t agged- l i s t ? that checks if a Scheme program begins with a certain operator (i.e.
starts with a given tag):

STk> (t agged- l i s t ? ‘ (def i ne (squar e x) (* x x)) ‘ def i ne)
#t
STk> (t agged- l i s t ? ‘ (def i ne (squar e x) (* x x)) ‘ l ambda)
#f
STk> (t agged- l i s t ? ‘ (l ambda (x) x) ‘ l ambda)
#t

Using t agged- l i s t ?, mc- eval is able to determine what kind of expression it must
evaluate. I am being purposely vague about the meaning of “type of expression” since the
following exercise will have you discover it.

2. Here is the mc- eval code. You’ll notice that each of the predicate functions that are in
boldface are defined in terms of t agged- l i s t ?. For each of these predicates,
determine the corresponding tag and write it on the side.

(def i ne (mc- eval exp env)
 (cond
 ((sel f - eval uat i ng? exp) exp)

 4

 ((var i abl e? exp) (l ookup- var i abl e- val ue exp env))

 ((quoted? exp) (t ext - of - quot at i on exp)) ;; tag is

 ((assignment? exp) (eval - ass i gnment exp env)) ;; tag is

 ((definition? exp) (eval - def i ni t i on exp env)) ;; tag is

 ((if? exp) (eval - i f exp env)) ;; tag is

 ((lambda? exp) ;; tag is

 (make- pr ocedur e (l ambda- par amet er s exp)

 (l ambda- body exp) env))

 ((begin? exp) ;; tag is

 (eval - sequence (begi n- act i ons exp) env))

 ((cond? exp) (mc- eval (cond- >i f exp) env)) ;; tag is

 ((appl i cat i on? exp)
 (mc- appl y (mc- eval (oper at or exp) env)
 (l i st - of - val ues (oper ands exp) env)))
 (el se
 (er r or " Unknown expr ess i on t ype - - EVAL" exp))))

What do all the tags have in common? What is special about them?

The definition of the appl i cat i on? predicate does not use t agged- l i s t ?:

(def i ne (appl i cat i on? exp) (pai r ? exp))

Why is the definition so simple?

Big idea! Since no one did the lab this week, we will revisit one of the lab questions:
Louis Reasoner (oh oh!) realizes that most of the time evaluation of Scheme expressions
will land in the appl i cat i on? clause of the cond. He proposes to move
appl i cat i on? to the top of the cond. This way mc- eval will not need to search the
entire cond to evaluate a procedure application. What is wrong with his idea?

3. With the metacircular interpreter, you have the power to change many, many aspects of
the Scheme language. (Homework Exercise 4.10 asks you to make some changes to the
syntax of Scheme. You can use your answers to this exercise as answers to 4.10.)
Implement a new syntax for procedure calls (leave special forms alone). To invoke a
procedure, you must first say st anf or d- sucks , then the procedure, then arguments:

; ; ; M- Eval i nput :

 5

(s t anf or d- sucks + 1 2 3)

; ; ; M- Eval val ue:
6

Here is the definition of f act or i al using this new syntax:

(def i ne (f act or i al n)
 (i f (s t andor d- sucks = n 0)
 1
 (st anf or d- sucks f act or i al (st anf or d- sucks – n 1))))

As we saw, it is imperative that mc- eval check for all special forms before the catchall
appl i cat i on? clause because special forms have their own rules of evaluation. These rules
of evaluation are captured in functions like eval - def i ni t i on, eval - i f or eval -
assi gnment . Big idea: to change the behavior of a special form, you need only change the
procedure responsible for evaluating it.

4. In most programming languages, the assignment operator(s) returns the new value of the
variable. Currently in the metacircular evaluator, def i ne and set ! both return “ok”.
Make the necessary changes to the functions responsible for evaluating these special
forms so that both def i ne and set ! return the new value of the variable. Examples:

; ; ; M- Eval i nput :
(def i ne a (+ 1 (def i ne b (+ 1 (def i ne c 0))))) ; ; c = 0
 ; ; b = 1
; ; ; M- Eval out put : ; ; a = 2
2 ; ; r et ur ns new val ue of a

Midterm 1 revisited. What would this return in the MCE after your changes are made?

((def i ne (cube x) (* x x x)) 3)

5. In STk, passing i f more than three arguments causes an error. What about in the MCE?
That is, what would the following return:

; ; ; M- Eval i nput :
(i f (= 2 3) ‘ yes ‘ no ‘ maybe ‘ so)

What about:

; ; ; M- Eval i nput :
(i f (= 2 3) ‘ yes ‘ no ‘ maybe ‘ so (/ 2 0))

 6

Adding special forms

You can add your own special forms to the MCE. All you have to do is provide a way for
mc- eval to recognize them (insert a predicate that checks for the tag of your special form) and
create the special evaluation rules for your special form. When defining special forms, you have
complete control over how you want the evaluation to proceed.

You also have two ways to implement the special evaluation rules you desire:

1. As an evaluation function. Write a function that knows how to evaluate your special form.
That is, define eval - foo, where foo is the name of the special form you’re adding; this
evaluation function will call mc- eval , mc- appl y and any of the other functions that make
the MCE work to evaluate your special form from start to finish. For example, the eval - i f
function implements the special rules for evaluating i f statements: evaluate the predicate,
and depending on its value evaluate the consequent or alternative.

The corresponding clause in mc- eval is:

 ((i f ? exp) (eval - i f exp env)) ; ; EVAL- I F cal l s MC- EVAL as needed

2. As a derived expression. With this approach, you’re writing the function foo- >bar, where
foo is the special form you’re adding and bar is a Scheme expression that the MCE already
knows how to handle. Instead of writing an evaluation function, you’re transforming the
special form into an expression that the interpreter already knows how to handle. For
example, the cond- >i f function takes a cond expression and returns the equivalent i f
expression:

STk> (cond- >i f ' (cond ((= a b) ' yes)
 ((= c d) ' no)
 (el se ' maybe)))
(i f (= a b) (quot e yes) (i f (= c d) (quot e no) (quot e maybe)))

The corresponding clause in mc- eval is:

((cond? exp) (mc- eval (cond- >i f exp) env)) ; ; COND- >I F does not
 ; ; cal l MC- EVAL

A crucial point to keep in mind whenever you are reading code for the meta-circular
evaluator is which language you are working in: 1.The Language You Are Implementing (in
this class Scheme or Logo), or the 2. Language Used by the Implementation (in this class
Scheme).

1. Language You Are Implementing (Source Language)

2. Languaged Used by the Implementation (Implementation Language)

• The metacircular evaluator generally translates 1. � 2.
• However, in the case of derived expressions, we translate 1. � 1.

 7

o Basically, we are removing “syntactic sugar” when we translate derived
expressions.

6. Add the and special form to the interpreter as a derived expression. That is, define the

and? function to spot and expressions. Then define the function and- >i f to perform
the syntactic transformation of an and expression to an i f expression. To simplify
things, and- >i f will be called with the initial and tag stripped off. Here is what we’ll
put into the cond in mc- eval to make this work:

((and? exp) (mc- eval (and- >i f (cdr expr) env)))

Also, unlike STk’s and, ours should return #t if all the arguments are true; it need not
return the value of the last true expression. Here is how and- >i f should work:

STk> (and- >i f ’ (cs61a i s cool))
(i f cs61a (i f i s (i f cool #t #f) #f) #f)

7. Now add or to the interpreter, but do not add this special form as a derived expression.
Instead, write a function to evaluate or expressions, eval - or .

Two important procedures: eval-sequence and list-of-values

Open your textbooks and find out what each does and when they’re called:
• eval-sequence

• list-of-values

 8

8. Add the whi l e expression to the evaluator. The whi l e is a “looping construct” found in
most programming languages (including Scheme—whi l e is an STk primitive; try it!).
It is an alternative to recursion. The while expression looks like this:

(whi l e <predicate>
 <body>)

If predicate is true, body (which is a bunch of Scheme expressions) is evaluated. The
predicate is then checked again, and if it’s true, we do body again, and check predicate,
etc. So body is evaluated over and over until predicate is no longer true. Here is an
example:

(def i ne x 2)

(whi l e (not (equal ? x 10)) ; ; need t o i mpor t not
 (set ! x (+ x 1))
 (di spl ay x) ; ; wi l l need t o i mpor t di spl ay
 (newl i ne)) ; ; al so need t o i mpor t newl i ne

The evaluation of this whi l e expression causes the numbers 3, 4 … 10 to be displayed
on the screen. At the conclusion of the evaluation, x is 10.

First of all, ask yourself why does whi l e need to be a special form?

Next, write the selectors whi l e- t est and whi l e- body that extract the corresponding
parts of a whi l e expression. Then, do whatever is necessary to add whi l e as a special
form. Make sure to use the abstract selectors you’ve created. The whi l e expression can
be added as a derived expression, though I think it is easier to write an eval - whi l e
procedure. Try to do it both ways. The return value of whi l e is up to you.

Once you’ve added whi l e, try to define the f act or i al procedure using whi l e.
(Hints: you will need a local variable; whi l e goes well with set ! .)

mc-apply: applying primitive and user-defined procedures
Just like mc- eval , mc- appl y is a cond statement. mc- appl y decides whether a procedure
is 1) primitive or 2) user-defined, and dispatches them differently.

(def i ne (mc- appl y pr ocedur e ar gument s)
 (cond ((pr i mi t i ve- pr ocedur e? pr ocedur e)
 (appl y- pr i mi t i ve- pr ocedur e pr ocedur e ar gument s))
 ((compound- pr ocedur e? pr ocedur e)
 (eval - sequence

 9

 (pr ocedur e- body pr ocedur e)
 (ext end- envi r onment
 (pr ocedur e- par amet er s pr ocedur e)
 ar gument s
 (pr ocedur e- envi r onment pr ocedur e))))
 (el se
 (er r or
 " Unknown pr ocedur e t ype - - APPLY" pr ocedur e))))

• Note that all of scheme’s primitive procedures do not need environments to execute, but
user-defined procedures need environments.

• Hey, I thought mc- appl y also calls mc- eval ? Where are the calls? Well, when you
run eval - sequence, you will need to evaluate the expressions in the procedure. mc-
eval is called there.

To better understand mc-apply, we need to see how procedures and environments are
represented in the underlying implementation.

The representation of environments
An environment is essentially a list of frames, just like when we draw environment diagrams.
The order of the frames in the list specifies the order in which we look up variables.

 Environment

Frame 1 Frame 4 Frame 2 Frame 3

The global environment is represented by a list containing one frame, the global frame.

A frame is a list of variable names with their respective values. We chose to represent a frame
as a pair pointing to two lists: a list of variable names and a list of variable values.

Whenever we lookup a variable in an environment using (l ookup- var i abl e- val ue var
env) , we start looking from the first frame, and proceed to the second frame if the variable is
not found. If the variable is not found in any of the frames, it is said to be unbound.

 10

Whenever we extend an environment using (ext end- envi r onment var s val s base-
env) , we create a new frame with the new list of variables and values and cons it to the front of
the list of environments.

Q: Describe what(def i ne- var i abl e! var val env) does.
A: It searches through the first frame for the variable. If the variable if found, it changes the

value bound to the variable. If the variable is not found, it adds a new binding to the current
frame (our implementation adds the binding to the front of the list of values and variables,
though where you add it in the list does not matter as long the index of the value in the list is
the same as the index of the variable in the list).

Q: Describe what (set - var i abl e- val ue! var val env) does.
A: It searches through the first frame for the variable. If the variable if found, it changes the

value bound to the variable. If the variable is not found, searches through the second frame
for the variable, binding a new value to the variable if it is found in the second frame. It
continues this process until it finds the variable or it reaches the last frame. If the variable is
not found in any of the frames, it signals an error.

What must we have in our initial global environment when we load up the meta-circular
evaluator?

• We need to have primitive procedures! Variables like + - car cdr … need to be
bound to the procedures that represent them in our underlying implementation language.
In the case of the meta-circular evaluator, the symbol ‘ + is bound to the procedure + in
the underlying scheme.

• We may also want to define default variables for convenience. For example, we can
define ‘ t r ue and ‘ f al se to represent #t and #f respectively.

Below is the code that sets up the environment when you first initialize the meta-circular
evaluator:

(def i ne (set up- envi r onment)
 (l et ((i ni t i al - env
 (ext end- envi r onment (pr i mi t i ve- pr ocedur e- names)
 (pr i mi t i ve- pr ocedur e- obj ect s)
 t he- empt y- envi r onment)))
 (def i ne- var i abl e! ' t r ue t r ue i ni t i al - env)
 (def i ne- var i abl e! ' f al se f al se i ni t i al - env)
 i ni t i al - env))

The representation of procedures

Procedure objects are represented in Scheme as a list. There are two representations of
procedures: one for user defined procedures and one for primitive procedures.

 11

 User Defined Procedure Object

‘procedure Env object Parameters:
list of variable
names

Body: list of
expressions

 Primitive Procedure Object

‘primitive Procedure in
underlying
implementation

Now, we can look back at mc-apply and see how these procedure objects are used.

Confusion with make- pr ocedur e
A common point for confusion is thinking that (make- pr ocedur e par amet er s body
env) does the same thing as

(make- begi n seq)
(make- l ambda par amet er s body)
(make- i f pr edi cat e consequent al t er nat i ve)

make- pr ocedur e creates a procedure object to be manipulated by mc- eval
implementation, whereas the other make-x procedures listed above are used for making derived
expressions.

Confusion with procedures used by eval - def i ne
Another place where people often get confused is when they try to read (def i ni t i on-
var i abl e exp) and (def i ni t i on- val ue exp) , which are both used by (eval -
def i ni t i on exp env). The reason for the if-statement is to decide whether they are
evaluating
(def i ne var - name exp)
or they are evaluating
(def i ne (pr oc ar gs …) body)
which will be translated to a derived expression

 12

Driver Loop: the user interactive prompt
Now that we understand the fundamentals of mc-eval and mc-apply, we just need loop that reads
in expressions and evaluates what the user types in to the interpreter.

(def i ne (dr i ver - l oop)
 (pr ompt - f or - i nput i nput - pr ompt)
 (l et ((i nput (r ead)))
 (l et ((out put (mc- eval i nput t he- gl obal - envi r onment)))
 (announce- out put out put - pr ompt)
 (user - pr i nt out put)))
 (dr i ver - l oop))

Printing Procedure Objects
You’ll note that procedure objects have a pointer to their defining environments. Their defining
environments may also have a variable name bound to the procedure object, and hence a pointer
to the procedure. We have a cycle! If we tried to print the defining environment of a procedure,
we may go into an infinite loop. As such, we need to check if a return value is a procedure
before printing it (and not print it’s environment if it’s a procedure). This is done in (user-print).

Those are all the core parts of the meta-circular evaluator. Now, all you need to do is familarize
yourself with it by doing more exercises from the book and figuring out which parts you need to
modify if you want to add/take away a feature (or chance the evaluation model).

More Exercises
9. You will be adding the l et special form to the interpreter as a derived expression for

homework. We will do something harder. We will add write an evaluation procedure for
it, eval - l et . This function should take a l et expression and an environment as
argument, and perform the evaluation by hand.

 13

10.
Hard!

Do Exercise 4.8 on Page 376 of SICP : implementing “named let”. This was the MCE
question on this summer’s final. Make sure you test it.

