
CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 1

CS61A

Week 15

Logic Is What Logic Declares
Logic To Be

(v1.0)

Paradigm Shift Again

With this many paradigm shifts in a single semester, we expect you to at least be able to pronounce the word
”paradigm” correctly after this class.

To reiterate, we are now in the realm of logic or declarative programming, at least for a week. Here in the magical
world of non-imperative, we can say exactly what we want - and have the computer figure out how to get it for us.
Instead of saying how to get the solution, we describe - declare - what the solution looks like.

The mind-boggling part of all of this is that it all just works through pattern matching. That is, there are no
”procedures” in the way you’re used to; when you write out a parenthesized statement, it’s not really a procedure
call, and you don’t really get a return value. Instead, either you get entries from some database, or nothing at all.

Be Assertive And Ask Questions

There are two things you can type into our query system: an assertion and a query.

A query asks whether a given expression matches some fact that’s already in the database. If the query matches,
then the system prints out all matches in the database. If the query doesn’t match to anything, you get no results.

An assertion states something true; it adds an entry to the database. You can either assert a simple fact, or a class
of facts (specified by a ”rule).

So here’s an assertion that you’ve seen: (assert! (wei likes chicken-feet))

You can also assert rules. In general, a rule looks like: (rule <conclusion> <subconditions>)

And it’s read: ”conclusion is true if and only if all the subconditions are true”. Note that you don’t have to have
subconditions! Here’s a very simple rule:

(rule (same ?x ?x))

The above says two things satisfy the ”same” relation if they can be bound to the same variable. It’s deceptively
simple - no subconditions are provided to check the ”sameness” of the two arguments. Instead, either the query
system can bind the two arguments to the same variable ?x - and it can only do so if the two are equivalent - or, the
query system can’t.

And the rule of love:

(assert! (rule (? person1 loves ?person2)
(and (? person1 likes ?something)

(? person2 likes ?something)
(not (same ?person1 ?person2 ))))))

The above rule means that ?person1 loves ?person2 if the three conditions following can all be satisfied - that is,
?person1 likes ?something that ?person2 also likes, and that ?person1 is not the same person as ?person2.

Note the and special form enclosing the three conditions - an entry in the database must satisfy ALL three conditions
to be a match for the query. If you would like a rule to be satisfied by this or that condition, you can either use the



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 2

or special form in the obvious way, or you can make two separate rules. For example, if one loves another if they like
the same things or if ?person1 is a parent of ?person2, we would add the following to the database:

(assert! (rule (?person1 loves ?person2) (parent ?person1 ?person2)))

Note the new rule does NOT overwrite the previous rule; this is not the same thing as redefining a procedure in
Scheme. Instead, the new rule complements the previous rule.

To add to confusion, you can also use the and special form for queries. For example,

(and (wei loves ?someone) (?someone likes chicken-feet))

is a query that finds a person Wei loves because that person likes chicken-feet.

There’s another special form called lisp-value: (lisp-value <pred?> <arg1, arg2, ...>)

The lisp-value condition is satisfied if the given pred? applied to the list of args return #t. For example, (list-value even? 4)
is satisfied, but (lisp-value < 3 4 1) is not. lisp-value is useful mostly for numerical comparisons (things that
the logic system isn’t so great at).

A note on writing rules: it’s often tempting to think in terms of procedures - ”this rule takes in so and so, and
returns such and such”. This is not the right way to approach these problems - remember, nothing is returned; an
expression or query either has a match, or it doesn’t. So often, you need to have both the ”arguments” and the
”return value” in the expression of the rule, and the rule is satisfied if ”return value” is what would be returned if
the rule were a normal Scheme procedure given the ”arguments”. Always keep in mind that everything is a Yes or
No question, and your rule can only say if something is a correct answer or not. So when you write a rule, instead
of trying to ”build” to a solution like you’ve been doing in Scheme, think of it as trying to check if a given solution
is correct or not.

In fact, this is so important I’ll say it again: when you define rules, don’t think of it as defining procedures in the
traditional sense. Instead, think of it as, given arguments and a proposed answer, check if the answer is correct. The
proposed answer can either be derived from the arguments, or it can’t.

A different approach for writing declarative rules is to try to convert a Scheme program to a rule. For example, let’s
take a crack at the popular append:

(define (append ls1 ls2)
(cond ((null? ls1) ls2)

(else (cons (car ls1) (append (cdr ls1) ls2 ))))

The cond specifies an ”either-or” relationship; either ls1 is null or it is not. This implies that, for logic programming,
we’d need two separate rules, each corresponding to each cond clause. The first one is straightforward:

(rule (append () ?ls2 ?ls2))

The second cond clause breaks ls1 into two parts - its car and its cdr - and basically says that appending ls1 and
ls2 is the same as consing the first element of ls1 to the list obtained by appending the cdr of ls1 to ls2. Translated
to logic-programming, it means the cdr of the result is equivalent to appending the cdr of ls1 to ls2, and that the
car of the result is just the car of ls1. This implies:

(rule (append (?car . ?cdr) ?ls2 (?car . ?r-cdr))
(append ?cdr ?ls2 ?r-cdr))

We will try the above techniques on some of the harder problems below.



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 3

QUESTIONS:

1. Write a rule for car of list. For example, (car (1 2 3 4) ?x) would have ?x bound to 1.

2. Write a rule for cdr of list. For example, (cdr (1 2 3) ?y) would have ?y bound to (2 3).

3. Using the above, write a query that would bind ?x to the car of my-list. Write another query that would
bind ?y to the cdr of my-list.

4. Define our old friend, member, so that (member 4 (1 2 3 4 5)) would be satisfied, and
(member 3 (4 5 6)) would not, and (member 3 (1 2 (3 4) 5)) would not.

5. Define its cousin, deep-member, so that (deep-member 3 (1 2 (3 4) 5)) would be satisfied as well.

6. Write the rule interleave so that (interleave (1 2 3) (a b c d) ?what) would bind ?what to
(1 a 2 b 3 c d).



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 4

Final Cramming CheckList

Week 1: Basic Scheme / Recursion

Week 2: Applicative vs. Normal / Lambda / Higher Order Functions

Week 3: Recursive vs. Iterative / Order of Growth

Week 4: Invariants / Debugging / Commenting

Week 5: Pair and Lists / Data Abstraction

Week 6: Trees / Deep Recursion / Scheme-1

Week 7: Data-Directed Programming / Message Passing / Tables

Week 8: Object Oriented Programming

Week 9: Environment Diagrams / OOP in vanilla scheme

Week 10: List Mutations / Vector / Scheme-2

Week 11: Client and Server/ Concurrency

Week 12: Meta-Circular Evaluator / Analyzing Evaluator / Logo

Week 13: Streams

Week 14: Lazy Evaluator / Non-deterministic Evaluator

Week 15: Logic Programming


