
CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 1

CS61A

Week 4

The Invariable March
Towards Midterm One

(v1.1)

MoonLanding

Your spaceship has just crash-landed on the moon. You were scheduled to rendezvous with a mother ship 200
miles away on the lighted surface of the moon, but the rough landing has ruined your ship and destroyed all of the
equipment on board, except for the 15 items listed below.

Your crew’s survival depends on reaching the mother ship, so you must choose the most critical items available for
the 200-mile trip. Your task is to rank the 15 items in terms of their importance for survival. Place the number
1 by the most important item, number 2 by the second most important, and so on through number 15, the least
important. Your ranking will be compared with that of the experts at NASA to determine the winner.

INSTRUCTIONS: This is an exercise in group decision making. Your group is to employ the method of group
consensus in reaching its decision. This means that the prediction for each of the 15 survival items must be agreed
upon by each group member before it becomes a part of the group decision. Consensus is difficult to reach. Therefore,
not every ranking will meet with everyone’s complete approval. Try, as a group, to make each ranking one with
which all group members can at least partially agree.

Here are some guides to use in reaching consensus:

1. Avoid arguing for your own individual judgments.Approach the task on the basis of logic.

2. Avoid changing your mind only in order to reach agreement and avoid conflict. Support only solutions with
which you are able to agree somewhat, at least.

3. Avoid ”conflict-reducing” techniques such as majority vote, averaging, or trading in reaching your decisions.

4. View differences of opinion as helpful rather than as a hindrance to decision making.

Iterm Your Rank Difference Group Rank Difference
Box of matches

Food concentrate
Fifty feet of nylon rope

Parachute silk
Solar-powered portable heating unit

Two 45-Caliber pistols
One case of dehydrated milk

Two 100 pound tanks of oxygen
Stellar map (of moon’s constellations)

Self-inflating life raft
Magnetic compass

Five gallons of water
Signal flares

First-aid kit containing injection needles
Solar-powered FM receiver-transmitter

Total - -



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 2

Variations on Invariants

Invariants confused you in lecture and confounded you on homework. Now it’s really time to show them who’s boss.

Invariants typically are used to prove the correctness of a program, and only apply to iterative processes. Very simply,
an invariant is a statement that holds true through all recursive calls of an iterative procedure. This statement
typically refers to a relationship between the various arguments in each recursive call.

It’s a little hard to grasp because, through each recursive call, the value of each argument changes. The important
thing to note here is that while the value of an argument may change, its relationship with the other arguments may
stay constant! To make this concrete, let’s look at an easy example, an iterative version of count:

;; returns the number of elements in sent

(define (count sent)
(define (count -helper s count -so-far)

(if (empty? s)
count -so-far
(count -helper (bf s) (+ 1 count -so-far ))))

(count -helper sent 0))

Simple procedures like the one above should no longer be a challenge to understand. The iterative procedure we’re
interested in is count-helper; count is merely a wrapper around count-helper that makes using count-helper
easier. So what invariants does count-helper have?

Well, here’s an easy one. Through all recursive calls of count-helper, count-so-far will always be non-negative.
This is pretty obviously true; count-so-far always starts out as 0, and we only add to count-so-far, so of course
it will be either 0 or positive. This guarantees that count-helper will always return a non-negative number.

Well okay, so it’s a little comforting to know that I won’t ever have negative number of elements in my sentences.
But how do I know that count-helper is correct? The above invariant, while true, is not terribly useful. And this
is true in general – often, there are many invariants that are true for a procedure, but most of them will not be very
interesting.

The most interesting ones are ones that prove correctness. And here’s one for count-helper: the sum of count-so-far
and the number of elements in s will always be the same. That is, no matter which recursive call you look at,
count-so-far plus number of elements in s will always be the same – in fact, this sum will be the number of
elements in the original sent. This is also pretty obvious for this simple procedure. It starts out with count-so-far
being 0 and s being the original sentence, and whenever we add one to count-so-far, we take one element away
from s. Because of this invariant, in the base case, when s is empty (and thus has no elements), count-so-far must
be the same number of elements in the original sent. And count-so-far is exactly the number that we return, so
count must be correct!

Let’s try a few slightly trickier ones.



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 3

QUESTIONS: What are “interesting” invariants of the following procedures (or their helpers)?

1. ;; returns sum of elements in sent

(define (sum -of -sent sent)
(define (helper sum s)

(if (empty? s)
sum
(helper (+ (first s) sum) (bf s))))

(helper 0 sent))

2. ;; returns a*b+c

(define (ab+c a b c)
(define (helper aa ans)

(if (= aa 0)
ans
(helper (- aa 1) (+ ans b))))

(helper a c))

3. ;; reverses sent

(define (reverse sent)
(define (helper old new)

(if (empty? old)
new
(helper (bf old) (se (first old) new ))))

(helper sent ’()))

4. (define (mystery a b)
(if (> a b)

a
(mystery (+ a 1) (- b 1))))



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 4

Recursions

QUESTIONS:

1. I have a bag of n oranges and m apples. If I eat them one at a time, how many ways can I eat all oranges
and apples?

2. Define a procedure subsent that takes in a sentence and an integer i. It returns a sentence with ith
item in the original sentence to the last item (The first element being the 0th item). For example,
(subsent ’(6 4 2 7 5 8) 3) returns (7 5 8).

3. Define a procedure sum-of-sents that takes in two sentences of numbers and returns a sentence
with the sum of respective elements from both sentences. Note that the sentences *do not* have to
be the same size! For example, (sum-of-sents ’(1 2 3) ’(4 5 6)) will return (5 7 9), whereas
(sum-of-sents ’(1 2 3 4 5) ’(6 7)) will return (7 9 3 4 5).

4. Consider the subset-sum problem: you are given a sentence of integers and a number k. Is there a subset
of the sentence that add up to k? For example,
(subset-sum ’(2 4 7 3) 5) ==> #t, since 2 + 3 = 5
(subset-sum ’(1 9 5 7 3) 2) ==> #f


