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CS61A

1 1 (v1.0)
Week 5 Pairs and Lists

Pair Up!

Introducing - the only data structure you’ll ever need in 61A - pairs.

A pair is a data structure that contains two things - the ”things” can be atomic values or even another pair. For
example, you can represent a point as (x . y), and a date as (July . 1). Note the Scheme representation of a
pair; the pair is enclosed in parentheses, and separated by a single period.

Note also that there’s an operator called pair? that tests whether something is a pair or not. For example,
(pair? (cons 3 4)) is #t, while (pair? 10) is #f.

You’ve read about cons, car, and cdr:
b )

e cons - takes in two parameters and constructs a pair out of them. So (cons 3 4) returns (3 . 4)
e car - takes in a pair and returns the first part of the pair. So (car (cons 3 4)) will return 3.

e cdr - takes in a pair and returns the second part of the pair. So (cdr (cons 3 4)) will return 4.

These, believe it or not, will be all we’ll ever need to build complex data structures in this course.

QUESTIONS: What do the following evaluate to?

(define u (cons 2 3))
(define w (cons 5 6))
(define x (cons u w))
(define y (cons w x))
(define z (cons 3 y))

1. u, w, %, y, z (write out how Scheme would print them and box and pointer diagram).
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2. (car y)

3. (car (car y))

4. (cdr (car (cdr (cdr z))))

5. (+ (cdr (car y)) (cdr (car (cdr z))))

6. (cons z u)

7. (cons (car (cdr y)) (cons (car (car x)) (car (car (cdr z)))))
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Then Came Lists

The super-cool definition of ”list”: a list is either an empty list, or a pair whose car is an element of the list and
whose cdr is another list. Note the recursive definition - a list is a pair that contains a list! So then how does it end?
Wouldn’t there be an infinite number of list? Not so: an empty list, called "nil” and denoted () is a list containing
no elements. And so it is, that every list ends with the empty list. To test whether a list is empty, you can use the
null? operator on a list.

So, to make a list of elements 2, 3, 4, we do (define x (cons 2 (cons 3 (cons 4 () ) ) ))
So x will be then represented as (2 . (3 . (4 . O ) ) )

Now, that looks a bit ugly, so Scheme, the nice friendly language that it is, sugar-coats the notation a bit so you get
(2 3 4) instead.

It’s a bit annoying to write so many cons to define x. So Scheme, the mushy-gushy language that it is, pro-
vides an operator list that takes in elements and returns them in a list. So we can also define x this way:
(define x (list 2 3 4))

Note: (car x) is 2, (cdr x) is (3 4), and (car (cdr x)) is 3! Well, it’s a bit tiresome to write (car (cdr x)) to
get the second element of x. So Scheme, again the huggable lovable language that it is, provides a nifty short hand:
(cadr x). This reads cader, and means "take the car of the cdr of”. Similarly, you can use (caddr x) - caderder -
to take the car of the cdr of the cdr of x, which is 4. You can mix and match the ’a’ and ’d’ between the ’¢’ and ’r’
to get the desired element of the list (up to a certain length).

You can also append two lists together. append takes in any number of lists and outputs a list containing those lists
concatenated together. So (append (list 3 4) (list 5 6)) returns (3 4 5 6).

Don’t You Mean sentence?

Oh stop grumbling. A ”sentence” is actually a special kind of ”list” - more specifically, a ”sentence” is a flat list
- a list without any sublists - whose elements can only be words or numbers. The operators of sentence - first,
butfirst, se, etc. - are also much more forgiving in their domains than their list counterparts. For example, here’s
a list of equivalences:

sentence | list example
first car (first ’(1 2 3 4)) = (car (1 23 4)) =1
butfirst | cdr (butfirst (1 2 3 4)) = (cdr °(1 2 3 4)) = (2 3 4)

empty? null? | (empty? > () = (null? > () = #t
sentence | list (se1234) = (list 123 4) =1 23 4)

sentence | cons (se 1 °(234)) =(cons 1°(234)) =1(1234)

sentence | append | (se (1 2) ’(3 4)) = (append ’(1 2) ’(3 4)) = (1 2 3 4)
count length | (count ’(3 4 1)) = (length ’(3 4 1)) =3

every map (every square (1 2)) = (map square (1 2)) = (1 4)

keep filter | (keep number? ’(2 k 4)) = (filter number? ’(2 k 4)) = (2 4)

Note that while se can be used for any combination of single-elements and sentences to make another sentence, 1ist,
cons and append are a bit more subtle, and what you pass in as arguments really matters.. For example,

(se (1 2) ’(3 4)) => (1 2 3 4) '= (list ’(1 2) (3 4)) => ((1 2) (3 4))
(se (1 2) 3) => (1 2 3) != (cons ’(1 2) 3) => ((1 2) . 3)

= (list ’(1 2) 3) => ((1 2) 3)

!= (append ’(1 2) 3) ;; Error: 3 not a list!

And so on. You must be more careful with what you pass into the list operators! What do you get for all that
trouble? Power - you can put anything into lists, not just words and numbers. You will now be able to construct
deep lists - lists that contain sublists, which allows you to represent all sorts of cool things. You can also store exotic
things like procedures in a list. The possibilities are endless!
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QUESTIONS:

1. Define a procedure 1list-4 that takes in 4 elements and outputs a list equivalent to one created by calling
list.

2. Define a procedure length that takes in a list and returns the number of elements within the list.

3. Define a procedure 1ist? that takes in something and returns #t if it’s a list, #f otherwise.

4. Define append for two lists.

5. Suppose we have x bound to a mysterious element. All we know is this:

(list? x) ==> #t
(pair? x) ==> #f

What is x?

6. Add in procedure calls to get the desired results. The blanks don’t need to have anything:
( ’a (b ¢ d e) )

==> (a b c d e)

( ’(cs6la is) ’cool )
==> (cs6la is cool)

( >(back to) ’(save the universe) )
==> ((back to) save the universe)

( (I keep the wolf) ’((from the door)) )
==> ((I keep the wolf) from the door)




