
CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 1

CS61A

Week 6
More Lists and Trees (v1.0)

More Lists

QUESTIONS:

1. Define a procedure (depth ls) that calculates how maximum levels of sublists there are in ls. For example,

(depth ’(1 2 3 4)) ==> 1

(depth ’(1 2 (3 4) 5)) ==> 2

(depth ’(1 2 (3 4 5 (6 7) 8) 9 (10 11) 12)) ==> 3

Remember that there’s a procedure called max that takes in two numbers and returns the greater of the
two.

2. Define a procedure (count-of item ls) that returns how many times a given item occurs in a given list.
The given item could also be in a sublist. So,
(count-of ’a ’(a b c a a (b d a c (a e) a) b (a))) ==> 7

3. Write a procedure (apply-procs procs args) that takes in a list of single-argument procedures and a
list of arguments. It then applies each procedure in procs to each element in args in order. It returns a list
of results. For example,
(apply-procs (list square double +1) ’(1 2 3 4)) ==> (3 9 19 33)

CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 2

4. Recall that there are two ways of defining procedures: the ”real” way, and the sugar-coated way. Write
a procedure (unsugar def) that takes in a procedure definition in sugar-coated syntax, and returns the
same definition without using the syntactic sugar. For example,
(unsugar ’(define (square x) (* x x))) ==> (define square (lambda (x) (* x x)))

5. Recall that a let expression is actually just a lambda expression. Write a procedure (let->lambda exp)
that takes in a let expression and returns the corresponding lambda expression. For example,

(let ->lambda ’(let ((x 3) (y 10)) (+ x y)))
==> ((lambda (x y) (+ x y)) 3 10)

6. (Extra for Experts) Implement (median ls) that returns the median of a list of numbers. You cannot use
recursion, and you cannot define additional procedures. The only higher-order procedure you can use is
filter. Assume nonempty lists.

CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 3

Of Trees And Forests

A tree is, abstractly, an acyclic, connected set of nodes (of course, that’s not a very friendly definition). Usually,
we talk about a tree node as something that contains two kinds of things - data and children. Data is whatever
information may be associated with a tree node, and children is a set of subtrees with this node as the parent.
Concretely, it’s often just a list of lists of lists of lists in Scheme, but you should NOT to think of trees as lists at all.
Trees are trees, lists are lists. They are completely different things, and if you, say, do (car tree) or something like
that, we’ll yell at you for violating data abstraction. car, cdr, list and append are for lists, not trees! And don’t
bother with box-and-pointer diagrams - they get way too complicated for trees. Just let the data abstraction hide
the details from you, and trust that the procedures like make-tree work as intended.

Of course, that means we need our own procedures for working with trees analogous to car, cdr, etc. Different
representations of trees use different procedures. You’re already seen the ones for a general tree, which is one that
can have any number of children (not just two) in any order (not ordered by smaller-than and larger-than). Its
operators are things like:

;; takes in a datum and a LIST of trees that will be the children

of this ;; tree , and returns a tree (define (make -tree datum

children) ...)

;; returns the datum at this node (define (datum tree) ...)

;; returns a LIST of trees that are the children of this tree. ;;

NOTE: we call a list of trees a FOREST (define (children tree)
...)

With general trees, you’ll often be working with mutual recursion. This is a common structure:

(define (foo -tree tree)
...
(foo -forest (children tree)))

(define (foo -forest forest)
...
(foo -tree (car forest))
...
(foo -forest (cdr forest)))

Note that foo-tree calls foo-forest, and foo-forest calls foo-tree! Mutual recursion is absolutely mind-boggling
if you think about it too hard. The key thing to do here is - of course - TRUST THE RECURSION! If when
you’re writing foo-tree, you belive that foo-forest is already written, then foo-tree should be easy to write.
Same thing applies the other way around.

CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 4

QUESTIONS:

1. Write (square-tree tree), which returns the same tree structure, but with every element squared. Don’t
use map!

2. Write (max-of-tree tree) that does the obvious thing. The tree has at least one element.

3. A maximum heap is a tree whose children’s data are all less-than-or-equal-to the root’s datum. And its
children are all maximum heaps as well. Write (valid-max-heap? tree) that checks if this is true for a
given tree.

