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CS61A

Week 7

Scheme-1, Data-Directed
Programming

(v1.0)

You Are Scheme - and don’t let anyone tell you otherwise

If you’re not already crazy about Scheme (and I’m sure you are), then here’s something to get excited about: only
6 weeks into the semester, and you can already write a fairly competent interpreter using Scheme! A certain lesser
college in the south bay doesn’t let you do that till your third year!

Now, now, I know it’s a little intimidating to look at this big piece of code with recursion out the wazoo, but hang
in there and throw in the time; this code is only going to get bigger and more complicated as the semester rolls on.
But the interpreter will also grow, not just in size, but in power and elegance as well.

Great. Now you look so excited to learn.

Our intention is to build a Scheme interpreter, a program that reads in Scheme code and executes it much like STk
does. It’s pure, pure coincidence that we happen to be using Scheme to build this very Scheme interpreter. Don’t get
confused by that! Make sure you separate what is Scheme1, and what is STk. Sometimes, it might help to pretend
you’re not interpreting Scheme, but just some crazy, bizarre language.

Another word of caution: There are many, many ways to implement a Scheme interpreter. You’ll often find yourself
asking, why are we doing things this way? Well, very possibly, we don’t have to, but that’s a design decision we
made. So be more concerned with how it works before you ask why?.

The Meat Is In eval-1 and apply-1

The whole operation of Scheme1 depends on the mutual recursion of eval-1 and apply-1. Here’s their job:

eval-1

• INPUT: a valid Scheme1 expression

• OUTPUT: the result of evaluating the Scheme1
expression; the value of the expression

• If exp is ”constant” (numbers, strings, #t, #f, etc.), then
return itself

• If exp is a symbol (+, *, car, etc.), then use the underlying
STK’s eval to evaluate it. This is where Scheme1 cheats;
all symbols are assumed to be primitive procedures of
STK. We do not expect to see actual variables here, since
we don’t have define, and all variables in a lambda body
should’ve already been substituted with values.

• If exp is a special form, do special form voodoo (if,
lambda, quote)

• If exp is a procedure call, evaluate what the procedure is
(using eval-1), and evaluate the arguments. Then, call
apply-1 with the evaluated procedure and arguments.

apply-1

• INPUT: a procedure and its arguments, both al-
ready evaluated

• OUTPUT: the result of applying the procedure
to its arguments

• If the procedure is a primitive procedure (+, *, cons,
etc.), then use STK’s apply procedure to perform prim-
itive voodoo. We could tell it’s a primitive procedure
using procedure? because, remember, eval-1 should’ve
already called STK’s eval on it already and turned it into
an STK procedure.

• If the procedure is a compound procedure (a lambda ex-
pression), call eval-1 on the body of the lambda with the
parameters substituted with the argument values

It is crucial to understand how eval-1 and apply-1 interact! It’s really not that complicated, and it’s exactly what
I’ve been muttering on the board whenever I pretend I’m Scheme and evaluate an expression.
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A Word on Special Forms

Before we dive too deeply into Scheme1 let’s briefly consider special forms. Where do we actually deal with them?
A quick glance at the code reveals that they’re very special indeed - we take care of them in eval-1. Note that we,
in no sense, consider them to be compound procedures, and we do NOT call apply-1 on a special form!

Remember why special forms are special - we don’t always evaluate every argument. If we treat it as a normal
procedure call, then we’re going to map eval-1 on all of its arguments, which is exactly what we don’t want to do.

So remember - if you want to add a special form, like we did for and, the place to do it is in eval-1. You must catch
it before eval-1 thinks it’s a procedure and evaluates all its arguments!

The Art of Being Complicated

Note that, as a quirk specific only to Scheme1, a lambda expression is self-evaluating (you can see this in eval-1).
That is, a lambda expression evaluates to itself, just like 3 evaluates to 3. Note, however, that a lambda expression
is not a procedure! This is an important distinction. A lambda expression is an expression - something that you
pass into eval-1 as an argument. A procedure is a value - something that eval-1 returns. It’s simply a matter of
coincidence that a procedure in Scheme1 is represented just like a lambda expression. This is rather unfortunate,
but will be fixed in mc-eval, the last iteration of these ”normal” Scheme interpreters.

How is a compound procedure different from a primitive procedure? Well, to eval-1, a procedure call is a procedure
call, and when eval-1 sees one, it simply evaluates the procedure and its arguments, regardless of whether the
procedure is primitive or compound. It then just passes both the procedure and its arguments to apply-1.

Thus it is apply-1 who distinguishes between primitive and compound procedures. Thus, the proc argument of
apply-1 can be one of two things:

• a primitive procedure - the value you get when eval-1 calls STK’s eval on a symbol like + or car which
are bound to primitive procedures in STK. These will pass STK’s procedure? test. To apply a primitive
procedure, apply-1 will use STK’s apply procedure to apply an STK procedure to the list of arguments. Here
we’re just passing the work off to the underlying STK.

• a compound procedure - this is represented as a lambda expression (though it is a procedure, not an
expression). These will pass the lambda-exp? test. Recall that, according to our ”substitution model”, in
order to evaluate a compound procedure (a lambda) call, we substitute argument values for parameters in the
procedure’s body, and then evaluate the body. More precisely, we’re going to call eval-1 on the body of the
procedure, after we substitute all the formal parameters with the evaluated argument values.

To perform substitution when doing a compound procedure call, we do something that is very similar to the
substitute2 that you wrote, where we take in the body of the procedure, and wherever we see a formal parameter,
we replace it with the corresponding argument. It does have this extra bound argument; this is a list of symbols that
we do not want to substitute for. For example, given ((lambda(x) ((lambda(x) (* x 2)) 5)) 10), when we’re
substituting x for 10, we do not replace the x in the inner lambda with 10. Instead, we’re supposed to leave that
x alone since that x refers to the inner x (the one that will be bound to 5) rather than the outer x (the one that’s
bound to 10).

All of this will become clearer once we try to trace through an example. For this example, we’re going to gloss over
most of substitution and just focus on the interaction between eval-1, apply-1 and substitute.

((( lambda (x) (( lambda (y) (lambda (x) (+ x y x))) x)) 5) 10)
| | |____________________ || |
| |_________________________________| |
|__________________________________________________|

A nasty little expression. I’ve added the marks below to make it a bit easier to read (the parentheses make it look
pretty crazy), though that’s pampering you a bit too much. Before anything, do it by hand - what should it return?
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Now, let’s try this the Scheme1 way:

⇒ eval-1 called with (((lambda(x) ((lambda(y) (lambda(x) (+ x y x))) x)) 5) 10); it sees that it is a proce-
dure call, naturally - a list of two elements. What’s the procedure? Well, to find out, call eval-1 on it!
⇒ eval-1 called with ((lambda(x) ((lambda(y) (lambda (x)(+ x y x))) x)) 5). Looks like a procedure call

to me! What’s the procedure?
⇒ eval-1 called with (lambda(x) ((lambda(y) (lambda(x) (+ x y x))) x)). This is just a lambda expres-

sion; it evaluates to a procedure represented by the same lambda expression, so we will just return itself.
⇐ eval-1 returns (lambda(x) ((lambda(y) (lambda(x) (+ x y x))) x)). Next, we need to map eval-1 over

the arguments, which is just the list of a single argument - (5). Mapping eval-1 over that, of course, will
return to us (5), since 5 is self-evaluating. We’re done evaluating the procedure and the arguments, so it’s
time to apply:

⇒ apply-1 called with proc (lambda(x) ((lambda(y) (lambda(x) (+ x y x))) x)), and argument list (5).
apply-1 sees that this is a compound procedure, so first it tries to substitute 5 for x in the body of the
expression:
⇒ substitute called with exp as ((lambda(y) (lambda(x) (+ x y x))) x), params as (x), args as (5),

and bound as (). We’ll try tracing through substitute a bit later, but we already know what it is
supposed to return:

⇐ substitute returns ((lambda(y) (lambda(x) (+ x y x))) 5). Evaluate the body:
⇒ eval-1 called with ((lambda(y) (lambda(x) (+ x y x))) 5). Looks like a procedure call! The proce-

dure will evaluate to (lambda(y) (lambda(x) (+ x y x))), and the argument list will evaluate to (5).
Let’s apply this puppy!
⇒ apply-1 called with proc (lambda (y) (lambda (x) (+ x y x))) and argument list (5). The pro-

cedure is compound, so we try to call substitute on its body:
⇒ substitute called with (lambda(x) (+ x y x)) with params (y), args (5), and bound (). It does

the obvious thing:
⇐ substitute returns (lambda(x) (+ x 5 x)). Now we evaluate the body:
⇒ eval-1 called with (lambda(x) (+ x 5 x)). Why, that’s a lambda expression! We’re going to just

return the procedure, represented as itself:
⇐ eval-1 returns (lambda(x) (+ x 5 x))

⇐ apply-1 returns (lambda(x) (+ x 5 x))
⇐ eval-1 returns (lambda(x) (+ x 5 x))

⇐ apply-1 returns (lambda(x) (+ x 5 x))
⇐ eval-1 returns (lambda(x) (+ x 5 x)), and we’ve finally found out what the procedure of our original procedure

call is! What are the arguments? Well, it’s just (10). Time to apply!
⇒ apply-1 called with (lambda(x) (+ x 5 x)) and argument list (10). Of course, this is a compound procedure,

so we, as usual, call substitute on the body:
⇒ substitute called with exp as (+ x 5 x), params (x), args (10), and bound the empty list ().
⇐ substitute returns (+ 10 5 10). Now we can evaluate the body.
⇒ eval-1 called with (+ 10 5 10). A procedure call! The procedure is evaluated as the STK + procedure, and

the argument list evaluated as (10 5 10). We call apply-1:
⇒ apply-1 called with STK’s + procedure and args (10 5 10). We will use STK’s apply to apply the

primitive procedure, getting 25.
⇐ apply-1 returns 25

⇐ eval-1 returns 25
⇐ apply-1 returns 25

⇐ eval-1 returns 25
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Accept No Substitutes (well, except you kind of have to)

So, just what does substitute do, given an expression and lists params, args and bound?

• If the expression is a symbol, then it might be a member of the params or bound lists. If the symbol is in
the bound list, then ignore it; otherwise, substitute it with the corresponding value in the args list. We use a
very simple procedure called lookup to do this. If it’s not a member of either lists, then it’s probably a symbol
referring to a primitive procedure, like + or car. In that case, where lookup won’t find it in the params list, it
will just give up and not try to replace it with anything.

• If the expression is a quoted expression or a constant, then don’t substitute it with anything.

• If the expression is a lambda expression, then return the same lambda with its body substituted correctly.
Look at the code; it makes a new lambda, whose arguments stay as they were, but whose body is passed
recursively to substitute. Note, however, that in the recursive call, we append the formal parameters of the
lambda expression onto the bound list; this is because, in the body of this lambda expression, we don’t want
to substitute any argument values for its formal parameters, even if we have a binding in the param-args lists
for a variable with the same name as one of its formal parameters. We already touched on why not.

• If the expression is anything else, it is a procedure call; then, map substitute on every sub-expression.

So let’s partially run through a somewhat involved substitution question. In the long trace above, we once called
substitute thus:

⇒ substitute called with exp as ((lambda(y) (lambda(x) (+ x y x))) x), params as (x), args as (5), and bound
as (). This is a procedure call, so we’re going to map substitute over every element of this list:
⇒ substitute called with exp as (lambda(y) (lambda(x) (+ x y x))). This is a lambda expression, so we’re

going to create a new lambda expression with the same formal parameters (y), and we’ll call substitute on the
body, adding the parameters to the bound list.
⇒ substitute called with exp as (lambda(x) (+ x y x)), params as (x), args as (5), and bound as (y). This

is a lambda expression, so we’re going to create a new lambda expression with the same formal parameters
(x), and we’ll call substitute on the body, adding the parameters to the bound list.
⇒ substitute called with exp as (+ x y x), params as (x), args as (5), and bound as (y x). This is a

procedure call, so map substitute over everything.
⇒ substitute called with exp as +, params as (x), args as (5), bound as (y x). + is a symbol, so we

call lookup. lookup won’t find + in the params list, so it’ll leave it alone.
⇐ substitute returns +
⇒ substitute called with exp as x, params as (x), args as (5), bound as (y x). x is a symbol, but it’s

also in the bound list, so we’ll ignore it.
⇐ substitute returns x
⇒ substitute called with exp as y, params as (x), args as (5), bound as (y x). x is a symbol, but it’s

also in the bound list, so we’ll ignore it.
⇐ substitute returns y
⇒ substitute called with exp as x, params as (x), args as (5), bound as (y x). x is a symbol, but it’s

also in the bound list, so we’ll ignore it.
⇐ substitute returns x

⇐ substitute returns (+ x y x)
⇐ substitute returns (lambda(x) (+ x y x))

⇐ substitute returns (lambda(y) (lambda(x) (+ x y x))); now we keep mapping substitute to the next ele-
ment:

⇒ substitute called with exp as x, params as (x), args as (5), and bound as (). x is a symbol, and it’s not in
the bound list, so we use lookup and replace x with 5.

⇐ substitute returns 5
⇐ substitute returns ((lambda(y) (lambda(x) (+ x y x))) 5)
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QUESTIONS:

1. Recall that a let expression is actually just a lambda expression. Write a procedure (let->lambda exp)
that takes in a let expression and returns the corresponding lambda expression. For example,

(let ->lambda ’(let ((x 3) (y 10)) (+ x y)))
==> (( lambda (x y) (+ x y)) 3 10)

2. If I type this into STK, I get an unbound variable error:
(eval-1 ’x)
This surprises me a bit, since I expected eval-1 to return x, unquoted. Why did this happen? What
should I have typed in instead?

3. Hacking Scheme1: For some reason, the following expression works:
(’(lambda(x) (* x x)) 3)
Note the quote in front of the lambda expression. Well, it’s not supposed to! Why does it work? What
fact about Scheme1 does this exploit?
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Data-Directed Programming

Up till now, we have been writing ”smart programs” - programs that know what to do given the arguments. But
with data-directed programming, we’re slowly moving toward the paradigm where programs are dumb, but data are
smart. If you recall, procedures like apply-generic are short and simplistic, but the data you pass in - arguments
with type tags - and the data you store in the global table - containing separate procedures for dealing with different
type tags and operations - are what knows what to do with the data. Hence the term ”data-directed programming”.

The advantage is simple: maintainability. Remember, programs or procedures are complicated beasts, and you
should cringe every time you need to modify a working procedure. Yet data is simple - putting new items into a
global table doesn’t require you to alter existing code. Adding new features will rarely break old, working code.

This is also useful when you’re dealing at once with multiple representations of data, like the corporate divisions
problem you saw in the lab. We will do something similar:

QUESTIONS:

The TAs have broken out in a cold war; apparently, at the last midterm-grading session, someone ate the last
potsticker and refused to admit it. It is near the end of the semester, and Professor Harvey really needs to enter
the grades. Unfortunately, the TAs represent the grades of their students differently, and refuse to change their
representation to someone else’s. Professor Harvey is far too busy to work with five different sets of procedures
and five sets of student data, so for educational purposes, you have been tasked to solve this problem for him.
The TAs have agreed to type-tag each student record with their first name, conforming to the following standard:

(define type -tag car) (define content cdr)

It’s up to you to combine their representations into a single interface for Professor Harvey to use.

1. Write a procedure, (make-tagged-record ta-name record), that takes in a TA’s student record, and
type-tags it so it’s consistent with the type-tag and content accessor procedures defined above.

2. A student record consists of two things: a ”name” item and a ”grade” item. Each TA represents a student
record differently. Casey uses a list, whose first element is a name item, and the second element the grade
item. Erin uses a cons pair, whose car is the name item, and the cdr the grade item. Make calls to put
and get, and write generic get-name and get-grade procedures that take in a tagged student record and
return the name or grade items, respectively.
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3. Each TA represents names differently. Kevin uses a cons pair, whose car is the last name and whose
cdr is the first. Wei is so cool that a ”name” is just a word of two letters, representing the initials of the
student (so Thom Yorke would be ty). Make calls to put and get to prepare the table, then write generic
get-first-name and get-last-name procedures that take in a tagged student record and return the first
or last name, respectively.

4. Each TA represents grades differently. Wei is lazy, so his grade item is just the total number of points for
the student. Kevin is more careful, so his grade item is an association list of pairs; each pair represents a
grade entry for an assignment, so the car is the name of the assignment, and the cdr the number of points
the student got. Make calls to put and get to prepare the table, and write a generic get-total-points
procedure that take in a tagged student record and return the total number of points the student has.

5. Now Professor Harvey wants you to convert all student records to the format he wants. He has sup-
plied you with his record-constructor, (make-student-record name grade), which takes in a name item
and a grade item, and returns a student record in the format Professor Harvey likes. He also gave
you (make-name first last), which creates a name item, and (make-grade total-points), which
takes in the total number of points the student has and creates a grade item. Write a procedure,
(convert-to-harvey-format records), which takes in a list of student records, and returns a list of
student records in Professor Harvey’s format, each record tagged with ’Brian.
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Midterm Review

QUESTIONS:

1. Write a procedure (apply-procs procs args) that takes in a list of single-argument procedures and a
list of arguments. It then applies each procedure in procs to each element in args in order. It returns a list
of results. For example,
(apply-procs (list square double +1) ’(1 2 3 4)) ==> (3 9 19 33)

2. Write (height-of tree) that takes in a tree and returns the height - the length of the longest path from
the root to a leaf.

3. Write (sum-of bst) that takes in a binary search tree, and returns the sum of all the data in the tree.


