—_

CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

CS61A The Attack of the

. . (v1.0)
Week 09 Environmentalists

Imperative Perils

For those of you used to programming in C or Java or almost any other languages, the idea of “assignment” -
assigning a value to a symbol - should be a dusty old hat. Certainly, there’s nothing exotic about it. But why
have we been so cautious about introducing this concept to you - 9 weeks into the semester! - when, if you take an
introductory CS class in any other language, you would see assignment on the first day? And why do I write such
long and convoluted sentences?

Before that, note that we have now stepped out of pure “functional programming”; instead, our function calls now
can have side effects. Here, nice properties of functional programming disappear; more specifically, the order in
which expressions are evaluated matters, and two calls to the same procedure with the same arguments may not
produce the same result!

Beyond that, you should note one more thing. Up until now, whenever we make a procedure call like (square 3) or
(+ 2 5), we are interested in what the procedure call returns. Such is the fundamental idea of functional program-
ming - procedures are interesting only because they take in something and produce something else (deterministically,
might I add!). This is not always true now. For example, if we say (set! x 5), what do we want it to return? Well,
we really don’t care what it returns, as long as it binds the value 5 to x after it’s done! For such expressions, were
more interested in their side effects than their return values.

Precisely because of that, sometimes we’ll want to evaluate multiple statements at once (each having some side
effects), whereas before we only evaluated one. Sometimes you can do that directly:

(define (foo x) (set! x 3) (set! y 5) (cons x y))

Note that the above defined procedure, foo, has three statements, only one of which returns something interesting.
STk will execute the three statements in the order of appearance, and return the value of the last expression. You
can do the same with a cond statement:

(cond ((< x 5) (set! x 10) (set! y 5) ’(cs6la rocks and so do toads))
(else (set! x 5) (set! y 10) ’(flan in the face)))

However, you cannot do the same for if statements for obvious reasons:

(if (> x 3) (set! x 3) (set! y 5) (set! z 10))

What does the above mean? There’s no way for STk to tell what you intended (set! x on #t7 set! x and y
on #t? set! x, y and z on #t7) And we can’t simply enclose things in parentheses, as you might be tempted to
do; ((set! x 3) (set! y 5)) means a procedure call where the procedure is the value of (set! x 3) and the
argument to the procedure is the value of (set! y 5), resulting in pure gibberish. It seems that we need a new
piece of syntax to deal with such situations!

This calls for begin, which groups together a sequence of statements, and returns the value of the last expression.
So we can instead, do:

(if (> x 3) (set! x 3) (begin (set! y 5) (set! z 10)))
which means to set! y and z if #£.

Now, side effects are obviously not all bad; if you're careful, it’s immensely more efficient and can often make the
code more compact. The keyword, of course, is “careful”; let’s look at what havocs they bring.



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 2

Assigning Things to Things and Stuff

Our way of doing this in Scheme is set!. Note that set! is a special form. Consider if it’s not; then, if we do:

(define x 5)
(set! x 3)

and set! is not a special form, it will evaluate what x is — 5 — and try to set the value of 5 to be 3, making no sense
at all. What we really meant to say, is to change the value bound to the symbol x (not the value of x) to 3. There’s
really not much to talk about here, so let’s try a few. The key is to keep the scope of variables straight!

QUESTIONS:

1. Define a procedure fib so that, every time it is called, it returns the next Fibonacci number, starting from
1

(fib) ==> 1, (fib) ==> 2, (fib) ==> 3, (fib) ==> 5, (fib) ==> 8, etc.

2. Consider these definitions:
(define x 3)
(define (z) (set! x 5) x)
what would (1ist (z) x) return?

3. (Extra for experts) (SICP ex. 3.8) Keeping number 2 in mind, define a procedure f so that, given the
procedure call (+ (£ 0) (£ 1)), if STk evaluates from left to right, it returns 0, and if STk evaluates
from right to left, it returns 1.

(define (f x))




CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 3

The Environment Diagrams

The biggest blow having side effects deals us is that we can no longer use the substitution model of evaluation that
we’ve fallen so hopelessly in love with. Consider this:

> (define (foo x) (set! x 3) x)
> (foo 10)

If we use the substitution model, then when we do (foo 10), we will replace all occurrences of x inside foo with 10.
Note that this means (foo 10) will then return 10, not 3! Obviously, we can no longer afford to be so obtuse, as
values of the variables can now change at any point in time. Thus, we need to use what is called the environment
model of evaluation. Briefly, we keep an “environment” of bindings from variable to value, and every time we
encounter a variable, we look up its value in the current environment. Note that we only lookup the value when we
see the variable, and so we’ll lookup the value of x only after we’ve already set x to be 3. Drawing these environment
diagrams is one of the most hated aspects of CS61A, but remember the mantra: this is what the Scheme interpreter
does, and since you’re much smarter than the interpreter, if the interpreter can do it, you can do it.

An environment frame is a box that contains bindings from variables to values. An environment frame can
“extend” another frame; that is, this frame can see all bindings of the frame it extends. We represent this by drawing
an arrow from an environment frame to the frame it is extending. The global environment is the only environment
that extends nothing. Here’s how to go about it:

1. Start with a box labeled global environment. This box starts out with bindings for all the primitives like +,
cons, map, etc.

2. Set the current frame to be the global environment. The current frame is just the environment that you're
in at this moment, and of course, you start in the global environment.

3. Evaluate your expressions, one by one. I'd recommend converting all sugar-coated procedure definitions to
their raw forms — (define (square x) (* x x)) ==> (define square (lambda(x) (* x x)))

Evaluation Rules:

If you're evaluating a:

e constant (numbers, strings, etc), they are self-evaluating so don’t do any work.

e variable, try to find a binding for it in the current frame. Failing that, follow what environment the current
frame points to, and try to find the binding there, and so on, until you reach the global environment. If it’s
still not in the global environment, then you can’t find it; it’s an error! (Recall that the global environment
contains all the bindings for primitives like cons, +, etc.)

e define expression, first evaluate the value to bind to according to these evaluation rules, then add an entry
into the current frame for the variable pointing to that value.

e lambda expression, draw two balls next to each other (usually just in the space around the boxes). The first
ball should point to the text of the lambda — the argument list and the body — and the second ball should point
to the current frame. The frame this circle points to is called the procedure environment.

e let expression, convert into its equivalent lambda expression and evaluate according to the above rules. The
next effect is that you will draw a new procedure with the second ball pointing to the current frame. Then,
you’ll evaluate all the values of the let-bindings first. Then, draw a new box that points to the current frame,
and let the current frame be the new box. In the new box, add all the variables of the 1let-bindings, and let
them point to the values you obtained. Then, evaluate the body of the let expression from within the new
current frame. After you're done, go back to the previous frame.

e set! expression, evaluate the value to set! to. Then, for the given variable, find its closest binding from the
current frame, moving up the chain of frames if necessary, and overwrite the old value with the new value.



CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes) 4

e any other special forms, just evaluate what you’re supposed to in the current frame.

e procedure call, then check if the procedure is a:

— primitive procedure - these work by magic, so just apply the procedure intuitively in your head.

— compound procedure - evaluate all the arguments first. Then, create a new box, and make this box
point to the procedure environment box of the procedure. Note that you do not point to the current frame!
Set this new box as the new current frame, and add all the parameters into the box, and have them point
to the argument values you evaluated. Evaluate the body of the procedure in the current frame. Once
done, go back to the frame from which you made the procedure call.

QUESTIONS: Draw environment diagrams for the following:

1. (Midterm 3, Fall 2001)

> (define x 5)
> (define (baz z)
(let ((x 100)
(function (lambda (y) (+ x y))))
(function (* z z))))
> (baz 7)




CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

2. (Final, Spring 2004)

> (define a 0)
> (let ((f (lambda (x) (set! a (+ a x)) x)))
(£ (£ 1))




CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

3. > (define (hmm n) (lambda(x) (+ x y n)))
> (define (ubh y)
(define hmm-y (hmm y))
(hmm-y 2))
> (uhh 42)




CS61A, Spring 2006, Wei Tu (Based on Chung’s Notes)

4. > (define answer O0)
> (define (square f x)
(let ((answer 0))
(f x)
answer))
> (square (lambda(n) (set! answer (¥ n n))) 3)




