wu :: forums « wu :: forums - Maximum modulus principle » Welcome, Guest. Please Login or Register. Feb 8th, 2023, 7:20pm RIDDLES SITE WRITE MATH! Home Help Search Members Login Register
 wu :: forums    general    complex analysis (Moderators: Eigenray, william wu, SMQ, Grimbal, Icarus, ThudnBlunder, towr)    Maximum modulus principle « Previous topic | Next topic »
 Pages: 1 Reply Notify of replies Send Topic Print
 Author Topic: Maximum modulus principle  (Read 4111 times)
kimtahe6
Newbie

Posts: 1
 Maximum modulus principle   « on: Jun 20th, 2013, 8:06am » Quote Modify

Suppose $D=\Delta^n(a,r)=\Delta(a_1,r_1)\times \ldots \times \Delta(a_n,r_n) \subset \mathbb{C}^n$

and

$\Gamma =\partial \circ \Delta^n(a,r)=\left \{ z=(z_1, \ldots , z_n)\in \mathbb{C}^n:|z_j-a_j|=r_j,~ j=\overline{1,n} \right \}$.

Let $f \in \mathcal{H}(D) \cap \mathcal{C}(\overline{D})$.

Prove that: $\sup_{z \in \overline{D}} |f(z)|=\sup_{z \in \Gamma} |f(z)|$

I think we apply maximum modulus principle, but i have trouble...
Any help (or hint or another solution) would be greatly appreciated   . Thanks.
 IP Logged
 Pages: 1 Reply Notify of replies Send Topic Print

 Forum Jump: ----------------------------- riddles -----------------------------  - easy   - medium   - hard   - what am i   - what happened   - microsoft   - cs   - putnam exam (pure math)   - suggestions, help, and FAQ   - general problem-solving / chatting / whatever ----------------------------- general -----------------------------  - guestbook   - truth => complex analysis   - wanted   - psychology   - chinese « Previous topic | Next topic »