wu :: forums
« wu :: forums - Algorithm »

Welcome, Guest. Please Login or Register.
Sep 8th, 2024, 5:06pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   cs
(Moderators: Eigenray, Grimbal, william wu, SMQ, ThudnBlunder, Icarus, towr)
   Algorithm
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Algorithm  (Read 4648 times)
kutta
Newbie
*





   


Gender: male
Posts: 3
Algorithm  
« on: Dec 6th, 2012, 12:55pm »
Quote Quote Modify Modify

Given an array A1, A2, ..., AN of N integers. The task is to find the product of ranges of the segments [i, j] over 1 <= i < j <= N, where the range of the segment [i, j] means max(Ai, Ai+1, ..., Aj) - min(Ai, Ai+1, ..., Aj).  
N<=10^9 and Ai<=10^9
IP Logged
Noke Lieu
Uberpuzzler
*****



pen... paper... let's go! (and bit of plastic)

   
WWW

Gender: male
Posts: 1884
Re: Algorithm  
« Reply #1 on: Dec 6th, 2012, 7:58pm »
Quote Quote Modify Modify

That smells suspiciously like homework to me...
 
I'll have to digest the question first too!
IP Logged

a shade of wit and the art of farce.
Grimbal
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 7527
Re: Algorithm  
« Reply #2 on: Dec 7th, 2012, 8:34am »
Quote Quote Modify Modify

If I understand the question, it seems to me that just storing the result is a challenge.
 
If N is 1E9, there are some 5.0E17 ranges.  Each range gives a term with up to 9 digits.  In the worst case the product would be of the close to 4.5E18 digits.
IP Logged
kutta
Newbie
*





   


Gender: male
Posts: 3
Re: Algorithm  
« Reply #3 on: Dec 7th, 2012, 9:47am »
Quote Quote Modify Modify

Input
 
The first line contains a single integer N, then N integers A1, A2, ..., AN follow on the second line.
Output
 
Output a single line containing the required product modulo 1000000007 (109+7), since the answer can be very large.
Constraints
 
2 <= N <= 100000 (105)
0 <= Ai < 1000000007 (109+7)
All test cases, except Example, are created by the method described in Test Case Generation.
Example
 
Input 1:
3
1 2 4
 
Output 1:
6
 
Input 2:
5
5 5 5 5 5
 
Output 2:
0
 
Explanation
 
In Input 1, we should consider 3 segments [i, j] = [1, 2], [2, 3], [1, 3].
The range of segment [1, 2] is max(1,2) - min(1,2) = 1.
The range of segment [2, 3] is max(2,4) - min(2,4) = 2.
The range of segment [1, 3] is max(1,2,4) - min(1,2,4) = 3.
Therefore, we obtain the answer 1 * 2 * 3 = 6, and you should output 6 mod 1000000007 = 6.
 
In Input 2, we should consider 10 segments, but all ranges of such segments are 0. And, of course, the answer is 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 = 0.
 
Note that Example is created by manually, so these arrays are not random arrays. It is quite unlikely that the official test cases contain an array with equal elements such as Input 2.
« Last Edit: Dec 10th, 2012, 1:49am by Grimbal » IP Logged
birbal
Full Member
***





   


Gender: male
Posts: 250
Re: Algorithm  
« Reply #4 on: Dec 10th, 2012, 11:00am »
Quote Quote Modify Modify

#include<stdio.h>
 
int GetMaxMinDifference(int size, int *arr,int ind1, int ind2)
{
int max = arr[ind1];
int min = arr[ind1];
for(int i=ind1+1; i<= ind2; i++)
{
if(arr[i] < min)
min = arr[i];
if(arr[i] > max)
max = arr[i];
}
return max-min;
}
 
int ProductOfRanges(int size, int *arr)
{
long long int product = 1;
for(int i=0; i<size; i++)
{
for(int j=i+1; j<size; j++)
{
product = product * GetMaxMinDifference(size,arr,i,j);
product = product%1000000007 ;
 
}
}
return product;
}
 
 
 
int main()
{
int n;
int *arr;
scanf("%d",&n);
arr = new int [n];
for(int i=0; i<n; i++)
{
scanf("%d",&arr[i]);
}
printf("Answer is :%d\n", ProductOfRanges(n, arr));
 
 
}
IP Logged

The only thing we have to fear is fear itself!
kutta
Newbie
*





   


Gender: male
Posts: 3
Re: Algorithm  
« Reply #5 on: Dec 10th, 2012, 11:08am »
Quote Quote Modify Modify

Thanks you are excellent Smiley
IP Logged
birbal
Full Member
***





   


Gender: male
Posts: 250
Re: Algorithm  
« Reply #6 on: Dec 10th, 2012, 12:07pm »
Quote Quote Modify Modify

This is optimized code, runs in O(n^2) time.
Code:
int ProductOfRangesUsingRunningInterval(int size, int *arr)
{
 
deque<int> incDQ;
 
deque<int> decDQ;
 
long long int product = 1;
 
for(int interval = 2; interval<=size; interval++)
 
{
 
 
int min;
 
 
int max;
 
 
incDQ.clear();
 
 
decDQ.clear();
 
 
incDQ.push_back(0);
 
 
decDQ.push_back(0);
 
 
for(int i=1; i<size; i++)
 
 
{
 
 
 
while(!incDQ.empty() && arr[i] > arr[incDQ.back()])
 
 
 
{
 
 
 
 
incDQ.pop_back();
 
 
 
}
 
 
 
incDQ.push_back(i);
 
 
 
if(incDQ.front() <= i-interval)
 
 
 
{
 
 
 
 
incDQ.pop_front();
 
 
 
}
 
 
 
while(!decDQ.empty() && arr[i] < arr[decDQ.back()])
 
 
 
{
 
 
 
 
decDQ.pop_back();
 
 
 
}
 
 
 
decDQ.push_back(i);
 
 
 
if(decDQ.front() <= i-interval)
 
 
 
{
 
 
 
 
decDQ.pop_front();
 
 
 
}
 
 
 
min = arr[decDQ.front()];
 
 
 
max = arr[incDQ.front()];
 
 
 
product = product * (max-min);
 
 
 
product = product % 1000000007;
 
 
}
 
}
 
return product;
}
IP Logged

The only thing we have to fear is fear itself!
birbal
Full Member
***





   


Gender: male
Posts: 250
Re: Algorithm  
« Reply #7 on: Dec 10th, 2012, 12:13pm »
Quote Quote Modify Modify

Finally an optimized and simplified code Smiley
Code:

int ProductOfRangesSimplified(int size, int *arr)
{
long long int product = 1;
for(int i=0; i<size; i++)
{
int min = arr[i];
int max = arr[i];
for(int j=i+1; j<size; j++)
{
if(arr[j] < min)
min = arr[j];
if(arr[j] > max)
max = arr[j];
product = product * (max-min) % 1000000007;
}
}
return product;
}
IP Logged

The only thing we have to fear is fear itself!
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board