wu :: forums
« wu :: forums - A sequence »

Welcome, Guest. Please Login or Register.
Oct 15th, 2024, 11:56pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   putnam exam (pure math)
(Moderators: Icarus, towr, william wu, Grimbal, Eigenray, SMQ)
   A sequence
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: A sequence  (Read 732 times)
wmat1234
Newbie
*





   


Posts: 1
A sequence  
« on: Aug 31st, 2007, 7:18am »
Quote Quote Modify Modify

Sequence:
 
x_1 = 1
 
x_n = x_{n-1} + sqrt(x_{n-1})
 
what is lim x_n/n^2
IP Logged
Eigenray
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 1948
Re: A sequence  
« Reply #1 on: Aug 31st, 2007, 9:21am »
Quote Quote Modify Modify

Let yn = 2xn; then
 
yn+12 = yn2 + 2yn.
 
On the one hand,
 
yn+12 < (yn+1)2,
 
so yn < n, and limsup yn/n 1.

 
On the other hand,
 
Clearly xn xn-1 + 1, so xn (hence yn) goes to infinity.  Now, fix 0<a<1.  Then there exists an N such that for n>N, yn > C = a2/[2(1-a)], and therefore
 
yn+12 = yn2 + 2yn > yn2 + 2ayn + a2 = (yn + a)2,
 
so for n>N, yn > C + a(n-N).
 
Therefore liminf yn/n a.  Since this holds for all a<1, we have liminf yn/n 1.  Since also yn < n, it follows lim yn/n = 1, and thus lim xn/n2 = 1/4.
IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board