Author |
Topic: A sequence (Read 732 times) |
|
wmat1234
Newbie
Posts: 1
|
Sequence: x_1 = 1 x_n = x_{n-1} + sqrt(x_{n-1}) what is lim x_n/n^2
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
Gender:
Posts: 1948
|
|
Re: A sequence
« Reply #1 on: Aug 31st, 2007, 9:21am » |
Quote Modify
|
Let yn = 2xn; then yn+12 = yn2 + 2yn. On the one hand, yn+12 < (yn+1)2, so yn < n, and limsup yn/n 1. On the other hand, Clearly xn xn-1 + 1, so xn (hence yn) goes to infinity. Now, fix 0<a<1. Then there exists an N such that for n>N, yn > C = a2/[2(1-a)], and therefore yn+12 = yn2 + 2yn > yn2 + 2ayn + a2 = (yn + a)2, so for n>N, yn > C + a(n-N). Therefore liminf yn/n a. Since this holds for all a<1, we have liminf yn/n 1. Since also yn < n, it follows lim yn/n = 1, and thus lim xn/n2 = 1/4.
|
|
IP Logged |
|
|
|
|