wu :: forums
« wu :: forums - Sinc(x) »

Welcome, Guest. Please Login or Register.
Dec 10th, 2024, 2:57am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   putnam exam (pure math)
(Moderators: Grimbal, william wu, Icarus, SMQ, towr, Eigenray)
   Sinc(x)
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Sinc(x)  (Read 4668 times)
ThudnBlunder
Uberpuzzler
*****




The dewdrop slides into the shining Sea

   


Gender: male
Posts: 4489
Sinc(x)  
« on: May 17th, 2008, 10:47am »
Quote Quote Modify Modify

Prove that sin(x)/x  =  cox(x/2)*cos(x/4)*cos(x/8)*cos(x/16) ...................
IP Logged

THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
pex
Uberpuzzler
*****





   


Gender: male
Posts: 880
Re: Sinc(x)  
« Reply #1 on: May 19th, 2008, 8:28am »
Quote Quote Modify Modify

on May 17th, 2008, 10:47am, ThudanBlunder wrote:
Prove that sin(x)/x  =  cox(x/2)*cos(x/4)*cos(x/8)*cos(x/16) ...................

hidden:

Repeatedly applying sin(2t) = 2 cos(t) sin(t), we find
sin(x) = 2 cos(x/2) sin(x/2)
sin(x) = 4 cos(x/2) cos(x/4) sin(x/4)
sin(x) = 8 cos(x/2) cos(x/4) cos(x/8) sin(x/8)
...
sin(x) = 2n sin(x/2n) * product[k=1..n] cos(x/2k)
 
Thus, for all positive integers n,
sin(x) / x = sin(x/2n) / (x/2n) * product[k=1..n] cos(x/2k)
 
Taking limits, we have
lim[n->inf] sin(x/2n) / (x/2n) = lim[t->0] sin(t) / t = 1
 
and therefore
sin(x) / x = product[k=1..inf] cos(x/2k).
IP Logged
ThudnBlunder
Uberpuzzler
*****




The dewdrop slides into the shining Sea

   


Gender: male
Posts: 4489
Re: Sinc(x)  
« Reply #2 on: May 19th, 2008, 10:52am »
Quote Quote Modify Modify

Yep, that's it, pex.   Smiley
IP Logged

THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
william wu
wu::riddles Administrator
*****





   
WWW

Gender: male
Posts: 1291
Re: Sinc(x)  
« Reply #3 on: May 20th, 2008, 1:44pm »
Quote Quote Modify Modify

There's a neat geometric interpretation of this formula in Eli Maor's book:
 
http://press.princeton.edu/books/maor/chapter_11.pdf
« Last Edit: May 21st, 2008, 3:15pm by william wu » IP Logged


[ wu ] : http://wuriddles.com / http://forums.wuriddles.com
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board