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Abstract— Vehicle-infrastructure cooperation via the Con-
nected Vehicle initiative is a promising mobile data source
for improving real-time traffic management applications such
as adaptive signal control. This paper focuses on develop-
ing estimation methods with the use of Connected Vehicle
data for several measures of effectiveness (e.g., queue length,
average speed, number of stops), essential for determining
traffic conditions on urban signalized arterials for real-time
applications. This research systematically determines minimum
penetration rates that allow accurate estimates for a wide range
of measures of effectiveness in undersaturated traffic conditions.
The estimation of these measures and minimum penetration
requirements has been tested using Next Generation Simulation
(NGSIM) data.

I. INTRODUCTION
Efficient design of control strategies on signalized arte-

rials are crucial for mitigating congestion in urban areas.
Traffic signals are the main mechanism for managing ar-
terial network capacity, yet the control of traffic signals
has not significantly changed over the past several decades,
despite rapid and profound changes in electronics, sensor
and communication technologies, and software. The main
impediment to improvements in traffic signal systems has
been the limited ability of available fixed-point sensors (e.g.,
loop detectors, cameras) to measure the true state of the
traffic network and its response to signal changes. Vehicle-
infrastructure cooperation via the Connected Vehicle initia-
tive could provide this comprehensive real-time information
on the movements of vehicles throughout the entire road
network and allow a transformational change in how we
control traffic and, finally, significantly reduce congestion
along arterials.

This paper focuses on developing algorithms for esti-
mating Measures Of Effectiveness (MOEs) from sampled
Connected Vehicle (trajectory) data and identifying the pen-
etration rate requirements for accurate estimates in undersat-
urated traffic conditions. These MOE estimates can be used
in order to improve the performance of traffic management
applications such as adaptive signal control. First, three
queue length estimation processes, Maximum Likelihood
(ML), Method of Moments (MM) and one based on Kine-
matic Wave Theory (KWT) [1], [2] are proposed and their
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accuracy for different penetration rates is investigated. Next,
the process for estimating several other MOEs is presented
and the minimum penetration rate requirements for achieving
accurate estimates are identified.

II. BACKGROUND

Several studies have been conducted in estimating MOEs
with the help of Connected Vehicle or probe data. The
majority of these studies have focused on the estimation of
queue length [3], [4], [5], [6], which is a commonly used
measure for designing and evaluating control strategies and
is difficult to estimate with static sensors. Probe vehicle
data were used by Comert and Cetin [3] who studied
the distribution of average queue lengths assuming known
penetration rate, while Venkatanarayana et al. [4] estimated
queue lengths by using the position of the last IntelliDriveSM

equipped vehicle in queue (i.e., ML estimation). Hao and
Ban [5] and Cheng et al. [6] used KWT to estimate queue
lengths. However, only Comert and Cetin [3] considered the
impact of the penetration rate of the equipped vehicles on
the estimation accuracy.

Other studies have focused on estimating travel time and
identifying the number of probe vehicles or penetration
rate necessary for reliable travel time estimation on urban
arterials [7], [8]. Both studies concluded that even low pen-
etration rates can provide satisfactory travel time estimates
for freeways and congested arterials. Li et al. [9] and Cetin
et al. [10] also developed travel time estimation algorithms
with the use of Vehicle-Infrastructure Integration (VII) and
probe vehicle data respectively and investigated the impact
of penetration rate on the estimate accuracy. VII data were
also used by Vasudevan [8] for the estimation of mid-block
flow rates and speeds.

None of the studies has managed to provide a comprehen-
sive description of the estimation process for a wide range
of MOEs and identify penetration rate thresholds that ensure
accurate estimates. This paper presents the first study that
systematically determines minimum penetration rates that
allow accurate estimates for a variety of MOEs essential for
real-time traffic management applications.

III. DATA

The impact of penetration rate on the accuracy of the
MOEs has been estimated with the use of real-world vehicle
trajectories obtained by the Next Generation Simulation
(NGSIM) program [11]. More specifically, NGSIM data
collected at Peachtree Street, Atlanta, GA for four signalized
intersections have been chosen for this study. The NGSIM
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data set consists of vehicle trajectories; the format includes
vehicle ID, time, position, lane, speed, and acceleration. All
data are available at a resolution of ∆T = 0.1 seconds. In
addition, vehicle type, vehicle length, and their origins and
destinations are available. The traffic signals’ settings (cycle
length, green, yellow, and offsets) are also known. The data
used in this study were collected from 12:45 to 13:00. A total
of 1,115 vehicles were processed. However, the number of
vehicles reduced to 228 after only considering the ones that
travel on the northbound direction of the main arterial.

IV. QUEUE LENGTH ESTIMATION

Estimation of queue length with the use of vehicle tra-
jectory data can be done by different methods. However, all
these methods require identifying the position of the vehicles
in queue at an approach. As a result, in order to estimate the
queue length for one intersection approach during a single
cycle we need to determine the spatio-temporal domain of
the estimation and consequently the sections of the sampled
trajectories considered in the estimation. In addition, we
need to identify the appropriate deceleration points of the
sampled trajectories, i.e., the points where the vehicles start
decelerating when they are joining the queue.

A. Discretization of Space and Time

First, the time-space of interest is discretized in different
rectangular regions accounting for the different links in the
arterial l={1, 2, 3, 4} and the different signal cycle times
k={1, 2, . . . , 9} (Fig. 1). This allows us to identify several
cells noted by the pairs (k,l) with their corresponding queues.
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Fig. 1. Discretization of space and time

B. Identification of Deceleration and Acceleration Points
within a Queue

Let us now focus on a specific cell (k,l) and drop the
notation (k,l) to facilitate expression. Next, all the decelera-
tion points corresponding to that cell have to be identified.
By doing so, the positions of stopped vehicles can be
determined. The time corresponding to the deceleration point

of vehicle i (i=1, . . . ,s) within a cell td
i is determined by

selecting the time that satisfies the following condition:

td
i = min{t|vi(t)> vc & vi(t +∆T )≤ vc

& (t,yi(t)) ∈ cell(k, l)} (1)

where vi(t) is the speed of vehicle i at time t, vc is a
constant speed threshold (e.g., 5 km/hr), i.e., the vehicle is
practically stopped, ∆T is the sampling interval and yi(t) is
the position of vehicle i at time t. These conditions identify
the points in time and space within the cell where vehicle
i joins the queue. A vehicle is considered to be in queue
from the moment it starts decelerating with a speed that
is lower than the specified threshold. For this reason, it is
necessary to consider the minimum of the times (or the
earliest deceleration point) that satisfies those conditions,
so that non-desirable deceleration points are not taken into
account.

All the times that satisfy (1), the set {td
i }, can now

be rearranged defining a new set of times U = {td
(i)} so

that y(1)(td
(1)) ≥ y(2)(td

(2)) ≥ ... ≥ y(s)(td
(s)). Note that all the

times included in this unfiltered set U do not necessarily
correspond to deceleration points within the queue. As shown
in Fig. 2, some of the points included in U may correspond
to vehicles which are not in the queue, e.g., stopping within
the link in order to park. Therefore, we will need to impose
more constraints to eliminate these undesired points.
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Fig. 2. Identification of deceleration and acceleration points within the
queue

We can see in Fig. 2 that the undesired deceleration
points are far from the deceleration points within the queue.
Thus, the distance between deceleration points should be
used for filtering. If vehicles within the same queue are
sampled independently with probability p, the number of
vehicles between adjacent sampled vehicles is a random
variable satisfying a geometric distribution with parameter
p. The 100(1-ε)th percentile of a geometric distribution with
parameter p is ln(ε)/ln(1− p) (we used the 90th percentile
in this paper, which is ln(0.1)/ln(1− p)). Therefore, the
filtering process is defined by the next condition, with NL
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being the number of lanes on the approach and K j being the
jam density per lane:

R =

{
(i)
∣∣∣∣d(i) , |y(i)(td

(i))− y(i+1)(t
d
(i+1))|>

c
K j

= max
{

ln(ε)/ ln(1− p)
NLK j

,1/K j

}}
(2)

After applying (2) to trajectories (i) ∈ {(1), . . . ,(s−1)}, the
set of vehicle indices to be considered in the queue length
estimation is given by:

A =


{(1)} if s = 1
{(1), ...,(s)} if R = { /0}
{(1), ...,min{R}} otherwise

(3)

Finally, F defines the set of all deceleration points that are
within the queue of interest.

F = {ta
(i)|(i) ∈ A} (4)

Note that F is a subset of U , and if two deceleration points
are too far apart, we would suspect that the upstream one is
not actually in the queue.

A similar method can be applied to identify the ac-
celeration points. The acceleration points will be denoted
similarly as ta

(i) and they are always paired with deceleration
points. Fig. 3 shows the deceleration (dark asterisks) and
acceleration (light asterisks) points at intersection 2 after
filtering.

Fig. 3. Detailed view of deceleration and acceleration points (Int. 2)

C. Queue Length Estimation Methods

Queue length can be easily estimated if the penetration rate
is 100%. But with only some of the vehicles sampled, queue
length estimation is a challenge. We analyze three possible
methods to tackle this problem. For each estimation method
2,000 samples are obtained where each vehicle trajectory is
sampled following a Bernoulli trial with probability p.

1) Maximum Likelihood Queue Length Estimation: Under
the assumption that the position of the vehicles in queue
can be characterized by a discrete uniform distribution, we
can use ML estimation. In this case, the estimator of the
queue length, L̂ML will be the relative position of the vehicle
located further apart from the intersection: the maximum
order statistic for the relative position of the vehicles within
the queue with respect to the intersection (Fig. 4). From
equation (3), if we define the number of elements in A (or
its cardinality) to be nA we have:

L̂ML = |yl− y(nA)(t
d
(nA)

)| (5)

where yl is the location of the downstream intersection of
link l. As we saw in the previous section the implementation
of this algorithm is fairly simple. If this algorithm is applied
assuming 100% penetration rate, the estimate obtained gives
the ground truth queue length.
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Fig. 4. ML and KWT queue length estimation

However, for penetration rates different than 100% this
estimator is biased, i.e., the average value given by the
estimator will not be equal to the real value of the queue
length. Instead, this estimator will tend to underestimate
the actual queue length. For low penetration rates it is very
likely that our sample of vehicle positions within the queue
will not include its last vehicle and therefore, we will tend
to underestimate queue lengths.

2) Method of Moments Queue Length Estimation: The
method of moments is also used under the assumption that
the vehicles in queue are characterized by a discrete uniform
distribution. In this case, the queue length estimator, L̂MM is
equal to two times the mean of the sampled relative positions:

L̂MM = 2

∣∣∣∣∣yl− 1
nA

nA

∑
i=1

y(i)(t
d
(i))

∣∣∣∣∣ (6)

This method is unbiased theoretically. However, in reality
the cars in a queue will not be uniformly spaced, and even
with a 100% penetration rate we would not observe the actual
queue length, which means that this method yields worse
results than the previous one.
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3) Queue Length Estimation based on Kinematic Wave
Theory: The application of queue length estimation based
on KWT requires at least two measurements of deceleration-
acceleration points from all the vehicle trajectories in a given
cell (k,l). Fig. 4 shows how the shockwaves predicted by
KWT can be estimated. The intersection point of the two
shockwaves determines the maximum possible queue length,
L̂KW :

L̂KW =

∣∣∣∣∣∣∣yl−
y(1)(t

d
(1))

wd −
y(1)(t

a
(1))

wa + ta
(1)− td

(1)
1

wd − 1
wa

∣∣∣∣∣∣∣ (7)

where:

1
wd =

td
(nA)
− td

(1)

y(nA)(t
d
(nA)

)− y(1)(td
(1))

(8)

1
wa =

ta
(nA)
− ta

(1)

y(nA)(t
a
(nA)

)− y(1)(ta
(1))

(9)

In undersaturated conditions the beginning of the first shock-
wave (the threshold between the free flowing and queued
states) does not necessarily match the beginning of the red
phase in the signal cycle. This makes it necessary to sample
at least two vehicle trajectories within a given cycle, in order
to be able to estimate the maximum potential queue length.
Thus, before we apply the proposed estimation algorithm we
need to know which the minimum acceptable penetration
rate p is. A possible metric to determine p would consist
of calculating the value that guarantees that at least 90%
of the time two vehicle trajectories on the same lane will be
sampled. Let us assume that the number of vehicles traveling
on one lane can be modeled as a discrete Uniform(Nmin,
Nmax) distribution. Then, for a given number of cars traveling
on one lane, approaching an intersection, the probability
of selecting at least two of them, based on a binomial
distribution, is:

P(sL ≥ 2|NL = m) = 1−P(sL < 2|NL = m) =

1−
1

∑
j=0

(
m
j

)
p j(1− p)m− j (10)

where sL is the number of vehicles sampled in lane L and NL
is the total number of vehicles at that lane for a given cycle.
This formula in combination with the assumption that NL
can be modeled as a discrete Uniform distribution, allows us
to compute the probability of sampling at least two vehicles
traveling on lane L in a given cycle as:

P(sL ≥ 2) = 1−
Nmax

∑
m=Nmin

P(sL < 2|NL = m)P(NL = m) =

1− 1
Nmax−Nmin +1

Nmax

∑
m=Nmin

(
1

∑
j=0

(
m
j

)
p j(1− p)m− j

)
(11)

To illustrate this, let us assume that the number of vehicles
arriving at an intersection in a specific lane ranges from 1
to 10 vehicles, then Fig. 5 provides the probability P(sL ≥
2) for different penetration rates. The figure indicates that

penetration rates higher than 50% ensure sampling of at least
two vehicles that travel on the same lane within a cell more
than 75% of the time.
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Fig. 5. Probability of sampling at least two vehicles for a given penetration
rate, with Nmin = 1 and Nmax = 10)

Unfortunately, the undersaturated conditions in the
NGSIM data set are not appropriate for the use of the
estimator based on the KWT. The low number of vehicles
and the non-uniformity of their arrivals at the intersections
result in the overestimation of the queue length. Fig. 6
compares the average absolute relative errors obtained by
the three queue length estimation methods.
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Fig. 6. Average absolute relative error vs penetration rate for the three
estimation methods

The maximum likelihood estimation clearly provides the
best results, although it would require a penetration rate of
at least 80% to guarantee that the average absolute relative
error of the estimation does not exceed 10%.

V. ESTIMATION OF OTHER MEASURES OF
EFFECTIVENESS

This section presents the estimation of various MOEs
considering different p values. For each of these values,
10,000 samples are obtained where each vehicle trajectory is
sampled following a Bernoulli trial with probability p. The
results presented allow to determine the minimum p required
to accurately estimate a given MOE.

A. Average Speed

The average speed for a given sample is obtained by using
Edie’s generalized average speed definition [12], including
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all the vehicles in the sample:

v̄ =
∑

S
i=1 li

∑
S
i=1 ti

(12)

where S is the total number of vehicle trajectories sampled,
li is the total distance traveled by vehicle i and ti is the total
time spent by that vehicle to traverse li. After computing
the average speed for each one of the 10,000 samples it is
possible to obtain a mean value and the standard deviation
of those average speeds for each of the penetration rates
considered. Fig. 7 shows the mean value of the average speed
estimate for different penetration rates.
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Fig. 7. Average speed estimates vs penetration rate

Although the results presented in Fig. 7 show a very
small variability for the estimate of the average speed, it is
necessary to recall that these results consider the mean value
across all 10,000 samples for a given p. In reality, with low
p the average speed estimate could vary greatly from one
sample to another. This variability can be shown with the
use of a box plot (Fig. 8). A penetration rate is considered
acceptable if ±2.7σ of the estimated average value (whisker
range) lays within a 10% of the average value for the ground
truth. Under this consideration, penetration rates higher than
50% provide accurate enough speed estimates.
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Fig. 8. Box plot of average speed estimates vs penetration rate

B. Average Delay per Unit Distance
Delay is defined as the difference between the actual travel

time to traverse an arterial section and the travel time under

free flow conditions. The average delay per unit distance for
a given sample is obtained by the following expression:

D̄ =
1
S

S

∑
i=1

1
li

(
ti−

li
v f

)
(13)

where D̄ is the average delay for a single sample of vehicles,
and v f is the free flow speed on the arterial corridor (a free
flow speed of 40 km/h was used in this study). Again, the box
plot (Fig. 9) indicates that samples obtained under low pen-
etration rates present a significant number of outliers, which
could lead to a misinterpretation of the traffic conditions.
For this case penetration rates higher than 80% would be
necessary for accurate estimates.
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Fig. 9. Box plot of average delay estimates vs penetration rate

C. Average Number of Stops

The average number of stops is obtained as the mean
number of stops of all vehicles within the sample that are
traveling through the arterial on the direction under consid-
eration. A stopped vehicle has been defined as a vehicle with
speed less than 5 km/h. As in the case of average speed and
delay estimates, the mean of the average number of stops
does not vary a lot even for low penetration rates. However,
a more detailed look at the box plot (Fig. 10) shows a high
variability in the average number of stops for low penetration
rates. In this case, penetration rates higher than 50% would
be necessary to obtain results that would lie close enough to
the ground truth value.

D. Average Acceleration Noise

Acceleration noise is defined as the standard deviation of
a vehicle’s acceleration and is used as a measure of the
smoothness of traffic flow along signalized arterials. The
average acceleration noise is estimated as the mean of each of
the vehicle accelerations’ standard deviation. Fig. 11 shows
again that variability is much higher for low p; values of p
on the order of 10% and above should be sufficient to obtain
reliable standard deviations for the acceleration.
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Fig. 10. Box plot of average number of stops estimates vs penetration rate
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Fig. 11. Box plot of acceleration noise estimates vs penetration rate

VI. DISCUSSION

The study conducted reveals that the required penetra-
tion rates for accurate estimates vary across the different
MOEs. The analysis of three different methods to estimate
queue length revealed that the most effective approach for
undersaturated conditions is the simplest one: the maximum
likelihood estimation. However, even that method requires
a minimal 80% penetration rate to guarantee an average
absolute relative error smaller than 10%.

For the rest of the MOEs considered, the minimum pene-
tration rates were estimated by analyzing the whisker ranges
in the box plots. As indicated in Table I, average speed and
delay can be estimated accurately with relatively low pene-
tration rates (50%). In addition, average acceleration noise
requires only a 10% penetration rate to provide estimates
within a 10% of the ground truth. Therefore, this study
reveals the MOEs that can be effectively used in the initial

TABLE I
MINIMUM PENETRATION RATE FOR MEASURES OF PERFORMANCE

ESTIMATES WITHIN 10% OF THE GROUND TRUTH

Performance Measure Required Penetration Rate (%)
Average Speed (km/hr) 50%
Average Delay (sec/m) 80%
Average Number of Stops 50%
Acceleration Noise (m/s2) 10%

and middle stages of the Connected Vehicle technology
implementation, when penetration rates will be lower than
100%.

Next steps include testing these MOEs estimation methods
for oversaturated conditions and fusing connected vehicle
data with loop detector data to obtain more accurate esti-
mates. Moreover, these estimates (e.g. queue length) can be
used as a trigger to adjust the signal settings at upstream
intersections in order to avoid network gridlock. This study
is part of a greater effort to develop a framework to use Con-
nected Vehicle data for advanced signal control strategies.
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