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1 To avoid confusion, we use bus stations to mean
As is well known, bus systems are naturally unstable. Without control, buses on a single
line tend to bunch, reducing their punctuality in meeting a schedule. Although conven-
tional schedule-based strategies that hold buses at control points can alleviate this prob-
lem these methods require too much slack, which slows buses. This delays on-board
passengers and increases operating costs.

It is shown that dynamic holding strategies based on headways alone cannot help buses
adhere to a schedule. Therefore, a family of dynamic holding strategies that use bus arrival
deviations from a virtual schedule at the control points is proposed. The virtual schedule is
introduced whether the system is run with a published schedule or not. It is shown that
with this approach, buses can both closely adhere to a published schedule and maintain
regular headways without too much slack.

A one-parameter version of the method can be optimized in closed form. This simple
method is shown to be near-optimal. To put it in practice, the only data needed in real time
are the arrival times of the current bus and the preceding bus at the control point relative
to the virtual schedule. The simple method was found to require about 40% less slack than
the conventional schedule-based method. When used only to regulate headways it outper-
forms headway-based methods.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Bus schedule reliability is an essential attribute of a bus system, and is consistently ranked as one of the major concerns
by passengers (Paine et al., 1967; Golob et al., 1972; Wallin and Wright, 1974). Unfortunately, bus systems are naturally
unstable in the sense that a small disturbance such as a traffic disruption can start a vicious cycle that causes buses to bunch.
The tendency to bunch is due to the fact that the loading time of a bus at a station1 is a non-decreasing function of the head-
way between buses. As first explained in Newell and Potts (1964), buses that run early encounter and serve fewer passengers,
and tend to catch up with the buses in front of them, while late buses tend to fall further behind. The result is the bus bunching
phenomenon, which makes the schedule useless and increases the average waiting time of passengers.

This problem can be alleviated by letting buses skip stops (see e.g., Suh et al., 2002; Fu et al., 2003; Sun and Hickman,
2005; Delgado et al., 2009). The problem can be also alleviated with holding strategies that do not leave passengers stranded;
see e.g. the pioneering works in Osuna and Newell (1972), Newell (1974), and Barnett (1974). This paper focuses on holding
strategies. They are characterized by embedding slack time in the schedule, and holding buses at each control point for a
period of time before their scheduled departure. A bus is generally held longer if it is ahead of schedule and shorter
. All rights reserved.

locations where buses stop to pick up or drop off passengers. Stop is only used as a verb.
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(or not even held) if it is behind schedule, so that the instability can be neutralized. The most common form of holding is the
‘‘schedule-based’’ method, in which drivers are instructed never to depart a control point ahead of a pre-published schedule.

Among the literature that analytically addresses the bus bunching problem with holding methods, most of the studies
(Osuna and Newell, 1972; Newell, 1974; Barnett, 1974; Hickman, 2001; Eberlein et al., 2001; Zhao et al., 2006) try to min-
imize passenger time (either waiting time at the station only or both waiting at the station and riding time on board). Prob-
lems based on this objective are difficult, and most of these studies only discuss problems with one bus line, a single control
point, and either one or two buses.2 Some use ‘‘rolling horizon’’ heuristics (Eberlein et al., 2001). Many more studies resort to
simulations (Koffman, 1978; Turnquist and Bowman, 1980; Abkowitz et al., 1986; Vandebona and Richardson, 1986; Senevir-
ante, 1990; Adamski and Turnau, 1998) due to the difficult nature of the problem.

There is also a literature that uses control theory. Daganzo (2009a) approached the bus bunching problem from a different
angle: instead of minimizing passenger waiting time, the paper proposed a headway-based dynamic holding strategy to re-
duce the amount of slack time in the schedule, subject to a headway variability constraint. The idea was to increase the com-
mercial speed of buses3 while compensating for the effects of small disturbances (e.g., due to traffic). With this new objective,
the paper analytically addressed a broader range of problems: systems with many buses, many control points, and stochastic
cruising time. The article proposed a general form for this family of dynamic holding strategies by defining a convolution kernel.
However, it only studied in depth a particular case: a headway-based control in which buses were held based only on the ex-
pected demand and their forward headway (the headway between the current bus and the bus in front) for systems where a
schedule is not published. It was shown that headways could be regularized with less slack than required by the schedule-based
control method. Unfortunately, as explained in the reference, the method cannot always compensate for large disturbances,
such as those due to bus breakdowns.

To alleviate this problem, Daganzo and Pilachowski (2009, 2011) and Daganzo (2009b) proposed a cooperative control
method in which bus speed was regulated based on the expected demand and the spacings between the current bus and
the preceding and following buses. This method was able to compensate for large disturbances. An Eulerian version of
the (Lagrangian) method in Daganzo and Pilachowski (2009, 2011), in which holding times are based on the forward and
backward headways (the headway between the current bus and the bus behind), can be easily constructed and will be stud-
ied in this paper.4

More recently, a holding method in which the holding times are based only on the backward headway, independent of
demand, has been proposed (Bartholdi, 2011). The method is appealing because it is very simple, does not require informa-
tion on demand, and it has been tested successfully with an experiment for a case with low demand. It is claimed that this
approach can also compensate for large disturbances (Bartholdi, 2011).

The results about to be described build on Daganzo (2009a). A general control method is proposed that uses both the ar-
rival times of all buses at stations and a virtual schedule. As such, the method includes as special cases all three existing mod-
els in the control genre. The virtual schedule is different from the published schedule, and is used even if there is no
published schedule, as occurs in bus lines with short headways. Unlike the existing methods, we found that with this general
control method, buses cannot only maintain regular headways but also stick to their schedule. This is important because the
control method then can be applied to bus lines with both long and short headways. The optimal parameters of the general
control method, i.e. those which provide the maximum commercial speed for a given schedule/headway reliability level, are
also identified. It turned out that a one-parameter version of the method, which only requires information on the current bus
and its leading bus, is near-optimal and outperforms other existing control alternatives.

The paper is organized as follows. Section 2 presents the assumptions and the bus motion laws under the general control
method. Section 3 proves that with this method buses are able to adhere to their schedule with only minor random devia-
tions and also have bounded headway variances. Section 4 introduces a mathematical program to obtain the optimal general
control and demonstrates that a simple version of the general control method is near-optimal. Section 5 shows that the sim-
ple version of the general control outperforms the other existing methods. Finally Section 6 summarizes the main findings.

2. Assumptions and bus motion formulation

2.1. Assumptions

The same assumptions are made as in Daganzo (2009a). (a) The number of bus dispatches and stations in the system can
be as high as desired. (b) Buses are always dispatched on time with equal headways from the first station. (c) The bus capac-
ity for passengers is unlimited. (d) Buses do not pass each other. (e) The mean vehicle cruising times between stations are
time-independent but location-dependent constants. (f) The passenger arrival processes are stationary but station-depen-
dent. The mean bus loading time is dominantly affected by boarding passengers, and is therefore proportional to the head-
way. (g) The actual vehicle trip times between stations including both cruising time and loading time are assumed to be
mutually independent random variables with a variance that is independent of the headway. (h) Only those passengers
2 The exception is Eberlein et al. (2001) which addresses an arbitrary number of buses. But the study does not model the cruising time between two stations
stochastically.

3 The commercial speed of buses is the total distance traveled divided by total time taken (including scheduled holding).
4 Daganzo (2006) demonstrates the close connection between Lagrangian and Eulerian coordinates in the context of automobile motion.
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arriving during the inter-arrival time will board the bus, and holding is then applied after the boarding process. (i) There
exists enough slack to ensure that the holding time never runs short. (j) Buses stop at all stations and holding is also applied
at all stations.

Assumption (a) makes the analysis comparable to a situation with a finite number of buses but enough layover time, so
that buses are always dispatched on time. Assumptions (b) and (c) are reasonable if the operational design problem for a bus
line (i.e., to choose proper dispatching headways, fleet size, and vehicle size for a given route) has already been addressed.
Assumption (d) is reasonable if the system is well managed. But even if passing is allowed, we can renumber the buses and
results will not change much. Assumption (e) is reasonable if the environment is approximately time-independent. Assump-
tion (f) is appropriate for bus systems, where boardings and alightings occur simultaneously and the alighting time per pas-
senger is much smaller than the boarding time per passenger. Assumption (g) is a reasonable approximation if buses are
operated without severe congestion, or with their own right-of-way, i.e., segregated from car traffic. Assumption (h) greatly
simplifies the formulation with only negligible effect, since the loading and holding times are much shorter compared with
the inter-arrival time. Assumption (i) makes the formulation linear and the problem tractable, as will soon be shown.
Assumption (j) can be relaxed (see Appendix A).

2.2. Bus motion with a control law

Let us use n (n = 0, 1, 2, . . .) to denote the bus number (the buses dispatched first have smaller numbers) and s (s = 0, 1, 2
. . .) to denote the station number (increasing s in the traveling direction). The notation follows Daganzo (2009a):

� tn,s is the scheduled arrival time of bus n at station s. The tn,s’s form the virtual schedule for buses; they are not the pub-
lished schedule to passengers. A published schedule can be obtained by shifting the virtual schedule earlier in time to
ensure that buses never depart ahead of the published schedule.
� an,s is the actual arrival time of bus n at station s.
� en,s = an,s � tn,s is the deviation from scheduled arrival time of bus n at station s.
� hn,s = an,s � an�1,s is the time headway between bus n and its leading bus at station s.
� H is the scheduled headway.
� cs is the average cruising time from station s to s + 1, which includes the time to accelerate and decelerate, but does not

include the dwell time to serve passengers.
� tn, s+1 is the random noise in the trip time of bus n between station s to s + 1, whose mean is zero and variance is r2

n;sþ1.
� Dn,s is the holding time applied to bus n at station s.5

� ds is the amount of slack time in the virtual schedule at station s (i.e., the holding time if the bus arrives when expected).
� bs is a dimensionless measure for the demand rate at station s, where the demand rate (in passengers/hour) is normalized

by the passenger boarding rate (also in passengers/hour). This implies that the passenger loading time at station s
increases by bs if headway increases by one unit of time. Typical values of bs range from 10�2 to 10�1.

With the above notation, the scheduled arrival times can be formulated as:
5 In r
time in

6 Pas
would b

7 The
buses b
the pap
tn;sþ1 ¼ tn;s þ bsH þ ds þ cs; ð1aÞ
tn;s ¼ tn�1;s þ H; ð1bÞ
with tn,s + bsH + ds being the scheduled departure times.6 The actual arrival times obey:
an;sþ1 ¼ an;s þ bshn;s þ Dn;s þ cs þ tn;sþ1: ð2Þ
By combining Eqs. (1) and (2), it is possible to express the motion of buses in terms of en,s:
en;sþ1 ¼ en;s þ bsðen;s � en�1;sÞ þ tn;sþ1 þ ðDn;s � dsÞ: ð3Þ
It is assumed that Dn,s is a linear function of the arrival times of all buses at station s, ai,s, or equivalently as a function of
the deviations from the schedule, the ei,s.7
Dn;s ¼ ds þ
X

i

cien�i;s: ð4aÞ
It is convenient to write this function as:
eality, we recommend holding buses en-route by slowing them down shortly after departing the station and by providing drivers with adequate real-
formation. This unnerves passengers less, and releases station capacity in those cases where the station is also used by other bus lines as well.
senger boarding time is expressed as bsH per assumption (h). If passengers who arrive after the bus arrival are allowed to board the bus, the expression
e bsH/(1 � bs). The two expressions are similar, however, when demand is low: bs� 1.
arrival times of the current bus and the buses in front, ai,s’s for i 6 n, are readily available when bus n arrives at station s. But the arrival times of the

ehind, ai,s’s for i > n, can only be predicted. For now, we will assume that we have perfect information, i.e., we know all ai,s’s. We will demonstrate later in
er that this type of information is not really needed for a near-optimal control method.
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Dn;s ¼ ds � ½ð1þ bsÞen;s � bsen�1;s� þ
X

i

fien�i;s; ð4bÞ
because plugging (4b) into (3), yields the simple relation:
en;sþ1 ¼
X

i

fien�i;s þ tn;sþ1: ð4cÞ
Note fi = ci for all i except f0 = c0 + 1 + bs and f1 = c1 � bs. Also note that
X
i

fi ¼ 1þ
X

i

ci: ð4dÞ
To define a specific control method one needs to specify the slack times ds at each station and all the control coefficients {. . .,
f�1, f0, f1, . . .}.

All three holding strategies in the control genre mentioned in the introduction are special cases of this general control
method. For example, if we set f0 = 1 + bs, f1 = �bs and fi = 0 "i R {0,1}, we obtain the case with no control, because then
Dn,s = ds = 0. In this case, the bus motion is governed by
en;sþ1 ¼ ð1þ bsÞen;s � bsen�1;s þ tn;sþ1: ðno controlÞ ð5Þ
The conventional schedule-based control method is the case with fi = 0 "i. In this case, the drivers are instructed not to
depart the control point before the scheduled departure time. If there is enough slack time in the schedule as per assumption
(i), the buses can always depart the control point on schedule, i.e., an,s + bs hn,s + Dn,s = tn,s + bsH + ds. Therefore, it follows that
Dn;s ¼ ds � ½en;s þ bsðen;s � en�1;sÞ�; ðsch: controlÞ ð6aÞ
and
en;sþ1 ¼ tn;sþ1: ðsch: controlÞ ð6bÞ
The method in Daganzo (2009a), which is based on the forward headway is:
Dn;s ¼ ds � ðaþ bsÞðhn;s � HÞ: ðforward headwayÞ ð7aÞ
This can be expressed as a function of the deviation from the schedule as:
Dn;s ¼ ds � ðaþ bsÞðen;s � en�1;sÞ: ðforward headwayÞ ð7bÞ
This is the special case of (4b) with f0 = 1 � a, f1 = a, fi = 0 "i R {0,1}, where 0 < a < 1, and (4c) becomes:
en;sþ1 ¼ ð1� aÞen;s þ aen�1;s þ tn;sþ1: ðforward headwayÞ ð7cÞ
Similarly, the Eulerian version of the (Lagrangian) method in Daganzo and Pilachowski (2009, 2011) and Daganzo
(2009b), which is based on both the forward and backward headways, is obtained by setting f�1 = f1 = a, f0 = 1 � 2a, fi = 0
"i R {�1,0,1}, where 0 < a < 1/2. This yields:
Dn;s ¼ ds þ aðhnþ1;s � HÞ � ðaþ bsÞðhn;s � HÞ; ðtwo-way headwayÞ ð8aÞ
Dn;s ¼ ds þ aenþ1;s � ðbs þ 2aÞen;s þ ðbs þ aÞen�1;s; ðtwo-way headwayÞ ð8bÞ
and
enþ1;s ¼ aenþ1;s þ ð1� 2aÞen;s þ aen�1;s þ tn;sþ1: ðtwo-way headwayÞ ð8cÞ
Finally, a demand-independent method based on the backward headway alone has been proposed (Bartholdi, 2011). The
control law of this method is: Dn,s = ahn+1,s = aH + a(hn+1,s � H) = aH + aen+1,s � aen,s. This method uses a slack time aH, which
can be quite large for the values of a (a � 0.5) that are recommended for stability purposes. Thus, to compare the backward
headway approach fairly (and more favorably) in our framework, we will study a variant in which both the slack time ds and
the control parameter a can be freely chosen. This method is obtained by setting f�1 = a, f0 = 1 + bs � a, f1 = �bs and fi = 0
"i R {�1,0,1}; then we have:
Dn;s ¼ ds þ aðhnþ1;s � HÞ; ðbackward headwayÞ ð9aÞ
Dn;s ¼ ds þ aenþ1;s � aen;s; ðbackward headwayÞ ð9bÞ
and
en;sþ1 ¼ aenþ1;s þ ð1þ bs � aÞen;s � bsen�1;s þ tn;sþ1: ðbackward headwayÞ ð9cÞ
3. Stability analysis

This section shows that with the general control method, buses are able to adhere to their schedule with bounded devi-
ations. Of course, this means that they can also maintain regular headways. To illustrate these properties, as in Daganzo
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(2009a), we first express the summation term in (4c) as the convolution (denoted with ⁄) of two vectors: the bus deviations
from the schedule es = [. . .en�1,s, en,s, en+1,s . . .]T and the kernel of the convolution (the set of control coefficients) f = [. . ., f�1,
f0, f1 . . .]T. The nth element of the convolution is: ½f � es�n ¼

P
kfn�kek;s. If we also define ts = [. . .tn�1,s,tn,s,tn+1,s . . .]T as the

vector of disturbances, then the vector form of (4c) is es+1 = f � es + ts+1.
Now apply the convolution iteratively, so that the e. terms can be expressed as a function of the control coefficients f and

the noise terms t.. This yields:
esþ1 ¼ tsþ1 þ f � es ¼ tsþ1 þ f � ðts þ f � es�1Þ ¼ tsþ1 þ f � ts þ f � f � es�1 ¼ . . . :
Next define fjj to be the jth self-convolution of f (i.e., fjj = f � fjj�1, where fj0 = [. . .0, 1, 0 . . .]T). Since assumption (b) states
that buses are always dispatched from the first station on time (e0 = 0), the above expression becomes:
esþ1 ¼
Xs

j¼0

f jj � tsþ1�j; ð10aÞ
which expands to
en;sþ1 ¼
Xs

j¼0

½f jj � tsþ1�j�n ¼
Xs

j¼0

X
i

fijjtn�i;sþ1�j: ð10bÞ
This expression is fundamental in the analysis of both headway and schedule deviations.

3.1. Deviations from schedule

Let us define r2
e ðf;n; sÞ as the function that returns var(en,s) given f, n and s. Given Eq. (10), if we assume that the noise

terms are independent and identically distributed (i.i.d.) with variance r2, then
varðen;sÞ ¼ r2
Xs�1

j¼0

X
i

ðfijjÞ2: ð11aÞ
Since all the terms in this summation are non-negative, an upper bound to the variance of en,s is:
r2
e ðfÞ � lim

n!1
s!1

varðen;sÞ ¼ r2
X1
j¼0

X
i

ðfijjÞ2 P r2
e ðf; n; sÞ; ð11bÞ
which will be our measure of schedule reliability. It is now possible to see that the following is true.

Lemma 1. Define F ¼
P

ijfij, then
P

ijfijjj 6 Fj;8j P 1.
Proof
X
i

jfijjj ¼
X

i

X
k

fkjj�1fi�k

�����
����� 6

X
i

X
k

jfkjj�1jjfi�kj ¼
X

k

ðjfkjj�1j
X

i

jfi�kjÞ ¼ F
X

k

jfkjj�1j 6 	 	 	 6 F2
X

k

jfkjj�2j 6 	 	 	 6 Fj:
h

Theorem 1. (Sufficient condition for bounded deviation from a schedule)If F < 1, then r2
e=r2 ¼

P1
j¼0

P
iðfijjÞ2 6 1=ð1� F2Þ.
Proof. An upper bound of
P1

j¼0

P
iðfijjÞ2 is obtained by choosing the jfijjj that maximizes

P
iðfijjÞ2 subject to

P
ijfijjj 6 Fj, as per

the previous lemma. Since the objective function
P

iðfijjÞ2 is convex, its maximum is reached at the vertices of the feasible
region, see Rockafellar (1970). The vertices of the feasible region here are: either jfijjj = 0, "i; or jfijjj = Fj for a single i and
jfijjj = 0 for all the other i. The maximum is reached in any of the latter cases and therefore

P
iðfijjÞ2 is bounded above by

F2j. Thus, it now follows that
P1

j¼0

P
iðfijjÞ2 6

P1
j¼0F2j ¼ 1=ð1� F2Þ. h

The theorem shows that any control method whose coefficients fulfill the condition F ¼
P

ijfij < 1 will be able to adhere to
a schedule indefinitely with some degree of reliability.

Note, all headway-based control methods such as (7), (8) or (9) have F P 1; so Theorem 1 does not apply. It is now shown
that all headway-based control methods with a finite number of non-zero coefficients have an unbounded measure of sche-
dule reliability, r2

e (f). The methods in question are of the form:
Dn;s ¼ ds þ
X

i

aihn�i;s: ð12Þ
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This includes (7a), (8a), and (9a) as special cases.

Lemma 2. Define F 0 ¼
P

ifi , then
P

ifijj ¼ ðF 0Þj;8j P 1.
Proof
 X
i

fijj ¼
X

i

X
k

fi�kfkjj�1 ¼
X

k

fkjj�1

X
i

fi�k ¼ F 0
X

k

fkjj�1 ¼ F 0
X

i

fijj�1; 8j P 1:
Applying this result recursively, we get:
X
i

fijj ¼ ðF 0Þj; 8j P 1:
h

Lemma 3. (Sufficient condition for unbounded deviation from a schedule)If f has at most 2n+1 non-zero coefficients cen-
tered around i = 0 so that F 0 ¼

P
ifi ¼

Pn
i¼�nfi ¼ 1 and fi = 0 for all other i then r2

e=r2 ¼
P1

j¼0

P
iðfijjÞ2 is unbounded.
Proof. Notice that the index of the non-zero terms of the nth convolution must be in the interval [�nj,nj]. ThusP
iðfijjÞ2 ¼

Pnj
i¼�njðfijjÞ2, which consists of 2nj+1 terms. A lower bound to

Pnj
i¼�njðfijjÞ2 is obtained by choosing the fijj values that

minimize
Pnj

i¼�njðfijjÞ2, subject to
Pnj

i¼�njfijj ¼ 1 as per Lemma 2. The minimum arises when all the terms in these summations
are equal, i.e., when fi—j = 1/(2nj + 1), " i 2 [�nj,nj].
X
i

ðfijjÞ2 ¼
Xnj

i¼�nj

ðfijjÞ2 P
2njþ 1

ð2njþ 1Þ2
¼ 1

2njþ 1
:

Since the sum
P1

j¼0
1

2njþ1 diverges because it is a special case of the general harmonic series, so does r2
e=r2 ¼

P1
j¼0

P
iðfijjÞ2

when F0 = 1. h
Theorem 2. All the headway-based methods with a finite number of non-zero coefficients, including (7), (8) and (9), result in an
unbounded deviation from the schedule, r2

e (f).
Proof. Since the number of non-zero coefficients is finite, the indices of these coefficients must be contained in the interval
[�n,n] for a sufficiently large n (some of the coefficients in this interval may be zero). Thus in view of Theorem 2, it suffices to
show that F0 = 1. To see this, express (12) in terms of the schedule deviations:
Dn;s ¼ ds þ
X

i

aihn�i;s ¼ ds þ H
X

i

ai

 !
þ
X

i

ðaien�i;s � aien�i�1;sÞ:
Note from above that ci = ai � ai�1 and therefore
P

ici ¼ 0. Then it follows from (4d) that F 0 ¼
P

ifi ¼ 1. h

In conclusion, any method with F < 1 will exhibit bounded deviations from a schedule, while headway-based methods
(which have F0 = 1) cannot provide this type of service. Bounded deviations from a schedule are important for systems with
long headways in which passenger arrivals are not uniform in time, but adjust to the schedule. Bowman and Turnquist
(1981) showed that if passengers choose their arrival times to minimize their wait, then their average waiting time is pro-
portional to the buses’ average deviations from their schedule; see also Daganzo (1997a).

3.2. Headway variance

We can also define r2
hðf;n; sÞ as the function that returns the headway variance var(hn,s) given f, n and s. We know that the

headways hn,s can be also expressed as hn,s = H + en,s � en�1,s. Therefore, we see from (10b) that:
hn;s ¼ H þ
Xs�1

j¼0

X
i

ðfijj � fi�1jjÞtn�i;s�j: ð13aÞ
Since the noise terms are i.i.d., var(hn,s) can be expressed as a sum of non-negative terms, and is thus bounded above by the
limiting case:
r2
hðfÞ � lim

n!1
s!1

varðhn;sÞ ¼ r2
X1
j¼0

X
i

ðfijj � fi�1jjÞ2 P r2
hðf;n; sÞ: ð13bÞ



Fig. 1. The iso-re/r and iso-d/r contours and the optimal control f� with two coefficients, b = 0.1. (a) All fi = 0 except for f0 and f1; (b) all fi = 0 except for f0

and f�1. Dotted lines within the square are the contours with equal re/r-value and solid lines are the contours with equal d/r-value. The dashed square is
the stability region.
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Now, it is also possible to demonstrate as a corollary of Theorem 1 that all the control methods which satisfy the condi-
tions in Theorem 1 will also have bounded headway variances.

Corollary 1. If r2
e (f) is bounded, then r2

h(f) is also bounded.
Proof. The headway variance upper bound r2
h(f) satisfies
r2
hðfÞ � lim

n!1
s!1

varðhn;s � HÞ ¼ lim
n!1
s!1

varðen;s � en�1;sÞ

¼ lim
n!1
s!1

½varðen;sÞ þ varðen�1;sÞ þ 2covðen;s; en�1;sÞ�

6 4r2
e ðfÞ:
The last inequality is true because covðen;s; en�1;sÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðen;sÞvarðen�1;sÞ

p
. Thus if r2

e (f) is bounded, r2
h(f) is bounded. h

In the case of headway-based control methods, both the forward-headway and two-way-headway methods (7) and (8)
have been shown to have a bounded headway variance (Daganzo, 2009a,b; Daganzo and Pilachowski, 2009, 2011). Curiously,
numerical calculations of (13b) show that the backward-headway method (9) only produces bounded headway variances for
low to medium demand levels (bs < 0.2). Moreover, when bs < 0.2 the control coefficient needs to be carefully chosen
(a � 0.5).

4. Optimal control

It is proposed to choose the control coefficients f that minimize the slack time ds required to avoid negative holding times
while guaranteeing a maximum standard deviation from the schedule: i.e., a given level of schedule reliability. This proposal
is reasonable because slack is inversely related to commercial speed.

To obtain the slack times ds that avoid negative holding times, we combine Eq. (4b) and (10), so that the holding time is
expressed as a function of the control coefficients and noise terms:
Dn;s ¼ ds � ½ð1þ bsÞen;s � bsen�1;s �
X

k

fken�k;s� ¼ ds �
Xs�1

j¼0

X
i

½ð1þ bsÞfijj � bsfi�1jj � fijjþ1�tn�i;s�j: ð14aÞ
Under the assumption of i.i.d. noise, the variance of the holding time Dn,s is the sum of many independent random vari-
ables, which as before is bounded above by the limiting case; i.e.:



Table 1
Effect of the number of non-zero control coefficients on d�/r when b = 0.1.

d�/r se/r = 1 se/r = 1.2 se/r = 1.5 se/r = 2

fi = 0 "i, except for f0 3.314 1.989 1.657 1.527
fi = 0 "i, except for f�1, f0, f1 3.314 1.978 1.637 1.463
fi = 0 "i, except for f�2, f�1, f0, f1, f2 3.314 1.978 1.637 1.463

8 To
become
the recu
when d
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varðDn;sÞ 6 r2
Dðf; bsÞ � lim

n!1
s!1

varðDn;sÞ ¼ r2
X1
j¼0

X
i

½ð1þ bsÞfijj � bsfi�1jj � fijjþ1�2: ð14bÞ
According to the central limit theorem, Dn,s is approximately normal. Therefore, to ensure that the holding time is rarely
negative, i.e., Pr{Dn,s < 0} � 0, we shall choose
dsðf; bsÞ ¼ 3rDðf;bsÞ; ð14cÞ
so that the assumption is true 99.87% of the time.
The optimization problem with J control points is then the following mathematical program, where se is a guaranteed

standard deviation from the schedule.
ðMP1Þ min
f

PJ

s¼1
dsðf; bsÞ

s:t: reðfÞ 6 se:
The functions in (MP1) are given by (11b), (14b) and (14c), and can be calculated numerically. A similar program can be writ-
ten if the objective is to guarantee a headway variance by using rh and (13b), instead of re and (11b) in the constraint.

4.1. Homogeneous case: sensitivity analysis

Note that in (MP1) the dimensionless demand rates, bs, at different stations (from 1 to J) can be different; and so can the
slacks, ds. For demonstration purposes, however, it is assumed here that the demand rate is uniform (bs = b) along the bus
line because this is a worst case scenario.8 A worst case is of interest because if a strategy can prevent buses from bunching
in the most challenging situation, it should be able to do the same in other situations.

Now that the demand rate is uniform along the bus line, the slack time will also be the same (d1 = d2 = . . .) at all the sta-
tions. Thus the subscript s is now dropped, and (MP1) becomes:
ðMP2Þ min
f

dðf;bÞ

s:t: reðfÞ 6 se:
Appendix A shows that it is sometimes better to introduce holding times at control points spaced every few stations rather
than at every station, and how to choose such spacing.

Fig. 1 shows the contour lines of re(f)/r and d(f,b)/r, when b = 0.1 for two methods that have two non-zero control coef-
ficients. In Fig. 1a, all fi = 0 except for f0 and f1, and in Fig. 1b, only f0 and f�1 are non-zero. The interior of the dashed squares in
the figures are the regions where the condition F ¼

P
ijfij < 1 holds. We see that in either case, both re(f) and d(f,b) are qua-

si-convex functions of f within the stability region
P

ijfij < 1. Clearly the optimal control coefficient values for any se are at
the point where its re = se contour is tangent to a d-contour, with the two gradients pointing against each other. This shows
that the reliability constraint is always binding. Fig. 1 shows the loci of optimal control coefficients for different re/r levels
by means of dark diamonds.

Since contours are convex, the solutions were obtained with a local gradient search. See Appendix B for the derivation of
the gradients. This method works well with up to 11 non-zero control coefficients, which we have tested. Note from Fig. 1
that the schedule-based control method (with fi = 0 "i) is actually among the optimal solutions. Indeed, it provides the best
possible schedule reliability (always departing on time), though it requires much slack (d/r � 3.4).

We also observe that the optimal control coefficients in both cases are very close to the f0 axis. This indicates that the
optimal f �1 and f ��1 are very small, and that the performance of a control method with a single non-zero coefficient (f0 – 0)
may be comparable with that with two or more non-zero coefficients. Table 1 confirms this guess. It shows the optimal slack
time (in units of r) for b = 0.1. Different demand rates yield similar results.
see this, assume that the total demand is fixed, the trip time is deterministic, and all buses are initially on time. In this case, the motion equation in (3)
s en,s+1 = (1 + bs)en,s. Now insert a noise term tn,1 to bus n between stations 0 and 1 so that en,1 = tn,1, and see how the noise propagates. It follows from
rsion en,s+1 = (1 + bs)en,s that en;sþ1 ¼ tn;1

Qs
i¼1ð1þ biÞ. Given that the total demand

Ps
i¼1bi is fixed, en,s+1 is maximized when all bi’s are the same, i.e.,

emand is uniform across all stations.



Fig. 2. Optimal values of f ��2; f
�
�1; f

�
0 ; f

�
1 , and f �2 with different demand rates and schedule reliability values.
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Fig. 2 shows the optimal control coefficients f ��2; f
�
�1; f

�
0 ; f

�
1 , and f �2 for different b and se/r. Note that the optimal control

coefficients are fairly insensitive to changes in the dimensionless demand rate, b. This is good news, because in reality we
may not know the demand rate very well. Also note that the values of f ��2; f

�
�1; f

�
1 and f �2 are roughly negligible (absolute values

less than 0.05 in Fig. 2).9 We did not show the other control coefficients because they are even smaller. So, the performance of a
control method with only one non-zero coefficient (f0 – 0), which we call the ‘‘simple control’’ method, should be near-optimal.
This seems to be the case. Numerical calculations show that for b 2 (0.01,0.1) and se/r 2 (1,2), the slack time with the simple
control is always within 4% of that of the optimal control obtained with 11 control coefficients.

The strategy is also robust to the selection of the control coefficients. Fig. 3 shows that control coefficients that do not
differ much from the optimal control coefficients do not increase the required slack time much. The figure displays the ratio
of d/d� when b = 0.1 and the general control method has two non-zero coefficients. In this figure, d is the slack time of the
non-optimal control coefficients at the indicated point and d� is the optimal slack time with the same re value. We see that
within a small neighborhood around the optimal coefficients f�, the ratio is close to 1 but large deviations can result in
inefficiency.

The near-optimality of the simple control is nice for both implementation and theoretical analysis. From the implemen-
tation point of view, only the arrival times of the current bus and its leading bus, as well as the virtual schedule, are needed
to decide the holding time of the current bus at a given station. From an analysis point of view, the simple control method is
helpful because formulas simplify and (MP1) can be solved in closed form.

4.2. A simple control law

The control law, bus motion, and metrics of interest are re-derived below, with f0 being the only decision variable. For the
system to be stable: F = jf0j < 1. Note that fijj = (f0)jd (i), where d(i) is the discrete unit impulse function. In this case, the reader
can verify that Eqs. (4b), (4c), (11b), (13b), (14b), and (14c) reduce to:
9 Wit
smaller
Dn;s ¼ ds � ½ð1þ bs � f0Þen;s � bsen�1;s�; ð15aÞ
en;sþ1 ¼ f0en;s þ tn;sþ1; ð15bÞ
r2

e ðf0Þ ¼ r2= 1� f 2
0

� �
; ð15cÞ

r2
hðf0Þ ¼ 2r2= 1� f 2

0

� �
; ð15dÞ

r2
Dðf0; bÞ ¼

r2½ð1þ b� f0Þ2 þ b2�
1� f 2

0

; ð15eÞ
and
dðf0; bÞ ¼ 3rDðf0;bÞ: ð15fÞ
These equations only apply if the system is stable (i.e., if f 2
0 < 1); then r2

e ðf0Þ > r2.
The optimal solution of (MP1) is obtained by choosing an f0 2 [0,1) that minimizes (15e) such that (15c) is bounded above

by s2
e , where se > r. Since (15e) declines with f0 but (15c) increases, it follows that (15c) must be binding. Thus in the optimal

solution the actual variance r2
e matches the target s2

e . Therefore, the optimal coefficient for the simple control method is:
f �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr2=s2

e Þ
q

; where s2
e > r2; ð15gÞ
h perfect information on future bus arrival times, jf ��2j and jf ��1j are already close to zero. In reality, information will be imperfect, leading to even
values for jf ��2j and jf ��1j (less trustworthy).



Fig. 3. Sensitivity to control coefficients when b = 0.1. On both parts of the figure, each point on the plane is associated with a reliability level re. The
contour value at a point is the ratio of the non-optimal slack time d to that point over the optimal slack time d� with the same re value of the point. (a) All
fi = 0 except for f0 and f1; (b) all fi = 0 except for f0 and f�1.
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and the optimal slack is:
Fig. 4.
d� ¼ 3se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr2=s2

e Þ
q� �2

þ b2

s
: ð15hÞ
5. Performance analysis

5.1. Comparison with other control methods

Fig. 4 plots expression (15h); it shows how the simple control method performs for different values of b. Note that it re-
quires much less slack time than the schedule-based control method, which is represented by the five points with se/r = 1.
Curves like those shown in Fig. 4 cannot be constructed for the headway-based control methods discussed in this paper, be-
cause as we have demonstrated, r2

e ðfÞ ¼ 1 in these cases.
To further compare the simple control method with the headway-based methods, Fig. 5 plots d/r vs. the dimensionless

headway standard deviations rh/r. Fig. 5 shows that the simple control method behaves better than the forward headway
method given by (7), the two-way headway method given by (8), and the backward headway method given by (9). Although
the two-way method nearly matches the simple control for large rh/r, it underperforms when high reliability (small rh/r) is
Slack time d vs. schedule reliability se for the simple control method. Schedule-based control method is represented by the points with se/r = 1.
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desired. In all three cases, the reduction in slack time is considerable when high reliability is desired. In fact, none of the
headway-based methods can achieve rh/r below 1.5 for any slack whatsoever, while the simple control method can. These
results should not be surprising given that headway-based methods are just special cases of the general control method, and
that the simple method is near-optimal.

5.2. Balancing headway regularity and slack time

Previously, we have chosen to minimize slack time (maximize commercial speed) subject to a schedule reliability con-
straint (or similarly a headway regularity constraint). This was appealing because it did not require knowledge of the pas-
senger origin-destination table. Here we assume that the average user trip length l is known and show how to balance the
two metrics by minimizing the sum of the average passenger waiting and riding times. We will focus on bus lines operating
with short headways and compare the five control methods (schedule-based, forward headway, backward headway, two-
way headway and the simple method). For bus lines with long headways, headway-based control methods are not applica-
ble, and the performance comparison of the schedule-based and the simple control method would favor the latter even more.

It is assumed that: (i) the average bus cruising speed is vc (i.e., including acceleration and deceleration due to the stops);
(ii) station spacing S is uniform; (iii) demand b is uniform; (iv) passengers value their waiting time c times (c > 1) as much as
their riding time. The passenger waiting time is: H=2þ r2

h=ð2HÞ. The passenger riding time is l/vc + (bH + d)l/S. The weighted
sum of the two can be expressed as the sum of a fixed component T0 and a variable component DT that depends on the con-
trol method:
Fig. 5.
only; (b
T0 ¼ cH=2þ l=vc þ bHl=S; ð16aÞ
DT ¼ cr2

h=ð2HÞ þ dl=S: ð16bÞ
Slack time d vs. headway reliability rh to compare the simple control method with headway-based control methods relying on: (a) forward headway
) forward and backward headways; and (c) backward headway only.



Fig. 6. Ratio of variable trip time over fixed trip time (DT/T0) for different control methods with various demand rates b and dimensionless trip lengths l/S,
with control points located at each station.
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Note T0 includes waiting, line-haul riding and loading time under ideal conditions. It is the minimal trip time, and is
achievable only if the bus system had no disturbances. The added term DT includes the extra time penalty passengers suffer
due to non-uniform headways r2

h

� �
and to the slack time (d). The variables r2

h and d can be calculated as a function of the
control coefficients with Eqs. (13b), (14b) and (14c) for the four considered methods. For each method the control coeffi-
cients that minimize (16b) are obtained.

Fig. 6 shows the ratio DT/T0 for the control methods, as a function of the demand rates b and the dimensionless trip
lengths l/S, when the control is applied at all stations. The following parameter values were used: S = 400 m, H = 5 min,
vc = 20 km/h, c = 2 and r = 10 s. For low demand rates (0.01 < b < 0.05), all the headway-based methods and the simple meth-
od perform much better than the schedule-based method. The DT/T0 ratios in this situation are 4–11% for the backward
headway method, 5–10% for the forward headway method and only 3–7% for the two-way headway method and the simple
method. As demand increases, the backward headway method becomes unstable and the simple method also outperforms
the rest of methods with a maximal DT/T0 ratio of 15% at b = 0.2 and l/S = 25. Note that the two-way headway method and
the simple method are practically indistinguishable. Finally, note that the results of the two-way headway method and the
backward headway method are optimistic, because in reality the backward headway will not be readily available.

Fig. 7 shows the same information as Fig. 6, assuming that the control points are also optimally located (every N� stations)
as per Appendix A. The value of N� is different for different methods and different combinations of b and l/S. In the minimi-
Fig. 7. Ratio of variable trip time over fixed trip time (DT/T0) for different control methods with various demand rates b and dimensionless trip lengths l/S,
with control points located optimally.
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zation of (16b), the headway variance r2
h is now replaced by its average across all stations hr2

hi, calculated as explained in the
last paragraph of Appendix A. By allowing values N > 1, the slack time needed for the schedule-based method is greatly re-
duced for low demand as shown in the figure, because in this case N� 
1. The backward headway method also saves a little
slack time because in this case N� � 2. The results for the simple control method, the forward headway method and the two-
way headway method remain the same as in Fig. 6, because N� = 1 for these methods.

Note that the simple method reduces slack time by nearly 40% compared with the schedule-based method. The two-way
headway method behaves similarly. For moderately heavy demand (b = 0.1), these two methods reduce the slack time of the
schedule-based method by more than 50%, and reduce the commercial speed compared with the ideal by only about 10%.
The two-way headway method, however, cannot help the buses keep to a schedule.

6. Conclusion

This paper proposes a family of dynamic holding strategies that can improve bus schedule reliability while maximizing
buses’ commercial speed. The proposed method allows buses not just to maintain regular headways but also to adhere to
their schedule. It is shown that none of the existing dynamic methods in the control genre, which are all headway-based,
can maintain a schedule. The proposed method only requires readily available information from the current bus and its lead-
ing bus. It is able to maintain quasi-regular headways with a higher commercial speed than other existing methods.
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Appendix A. A method for locating control points

We have assumed during the analysis that the proposed control method is applied at each station, but this is not always
desirable. As shown in Daganzo (1997b, 2009a), it is often beneficial to space out the control points more widely. In this spir-
it, it is assumed here that control points are located every N stations, and N is treated as a decision variable. The demand rate
b is assumed to be uniform throughout the bus line and such that b� 1.

We will first transform the equations of bus motion from station to station into similar equations describing the bus mo-
tion from control point to control point, as if there were no intermediate stations. It will be shown that when b� 1, one may
simply replace b and r with b0 = Nb and r0 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ NðN � 1Þb

p
to model the bus motion in this manner.

The variance of the noise between control points (r0)2 is simply given by (11a) using the {fijj} of the uncontrolled case and
replacing s by N. Recall that for the uncontrolled situation, f = [. . ., 1 + b, � b,. . .]T. It can be seen from the binomial expansion
that
fmjj ¼
j

m

� �
ð1þ bÞmð�bÞj�m

: ðA:1Þ
Thus,
f jj ¼ . . . ; ð1þ bÞj; jð1þ bÞj�1ð�bÞ;
j
2

� �
ð1þ bÞj�2ð�bÞ2; . . .

� 	T

� ½. . . ;1þ jb;�jb;0; . . . �T : ðA:2Þ
The last approximation works because b� 1 and thus we can neglect terms of order b2 and higher. Eq. (A2) can now be in-
serted in (11a) to yield:
ðr0Þ2 ¼ r2 PN�1

j¼0

P
m
ðfmjjÞ2

¼ r2 PN�1

j¼0

P
m

j
m

� �
ð1þ bÞmð�bÞj�m

� 	2

� r2 PN�1

j¼0
ð1þ 2jbÞ

¼ r2ðN þ NðN � 1ÞbÞ:

ðA:3Þ
It should also be clear from (A2) that when j = N and b� 1, the dimensionless demand between control points is b0 = Nb.
By setting b0 = Nb and r0 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ NðN � 1Þb

p
, we can treat the bus motion as if there were only stations at the control

points and apply (MP2) with these new parameters. The number of stations between control points, N, is however, a decision
variable in the new version of (MP2). Consideration of (11b) and (14b) reveals that this new mathematical program is:
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ðMP4Þ min
f;N

r0
r

dðf;NbÞ
N

s:t: r0
r reðfÞ 6 se

r0
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ NðN � 1Þb

p
:

This MP can be solved numerically as in Section 4.1, or analytically if we adopt the simple control method. A similar program
can be written if the objective is to guarantee a headway variance by using rh instead of re.

In some instances, it may be useful to have an idea of the average of the variances of the schedule deviations across all the
stations, hr2

e i; or the average of the headway variances, hr2
hi. To obtain these values, (11b) and (13b) would still be used, but

the recursion fjj = f� fjj�1 used to evaluate the convolution coefficients, fijj, would use the fi from (4c) when ‘‘j’’ corresponds to
a control point, and f0 = 1 + bs, f1 = �bs and fi = 0 "i R {0,1} from (5) otherwise.

Appendix B. Derivation of the gradients for greedy search

In developing Fig. 1, we solved the following optimization problem, which is equivalent to (MP2):
ðMP5Þ min
f

r2
Dðf; bÞ

s:t: r2
e ðfÞ 6 s2

e :
From Eqs. (11b) and (14b), we find the following expressions for r2
e (f) and r2

D(f, b), whose gradients we seek:
r2
e ðfÞ ¼ r2

X1
j¼0

X
i

ðfijjÞ2;

r2
Dðf;bÞ ¼ r2

X1
j¼0

X
i

½ð1þ bÞfijj � bfi�1jj � fijjþ1�2:
Using generating functions, one can find the following expression for fijj:
fijj ¼
X

k0 ;k1 ;			km�1Pm�1

r¼0
kr¼jPm�1

r¼0
rkr¼i

j!
k0!k1! 	 	 	 km�1!

f k0
0 f k1

1 	 	 	 f
km�1
m�1 : ðB:1Þ
Since
@fijj=@fr ¼ jfi�rjj�1; ðB:2Þ
The partial derivatives of r2
e (f) and r2

D (f, b) with respect to fr can be expressed as:
@r2
e

@fr
¼ 2r2

X1
j¼0

X
i

ðfijjÞðjfi�rjj�1Þ; ðB:3Þ
and
@r2
D

@fr
¼ 2r2

X1
j¼0

X
i

½ð1þ bÞfijj � bfi�1jj � fijjþ1�½ð1þ bÞjfi�rjj�1 � bjfi�r�1jj�1 � ðjþ 1Þfi�rjj�: ðB:4Þ
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