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(ASCE)TE.1943-5436.0000401. © 2012 American Society of Civil Engineers.

CE Database subject headings: Highways and roads; Driver behavior; Vehicles; Traffic management; Traffic flow; Asymmetry.

Author keywords: Highway traffic; Lane-change maneuvers; Instrumented probe vehicles; Lidar; Traffic instabilities.

Introduction

In this paper an instrumented probe vehicle is used to monitor am-
bient traffic and overcome many of the challenges of observing traf-
fic flow phenomena that occur over extended distances. As will be
discussed shortly, one contribution of this paper is a general meth-
odology to identify the probe vehicle’s lane of travel without a pri-
ori knowledge of where the lanes are. This knowledge is used to
find the probe’s lane-change maneuvers (LCMs), to differentiate
these LCMs from GPS errors, and, in conjunction with a ranging
sensor, to identify which lanes the ambient vehicles are in to find
their LCMs.

The second contribution of this paper comes from exploiting
these new tools. The identified LCMs are used to provide an inde-
pendent validation of Wang and Coifman (2008), and thus yield
further evidence of how LCMs contribute to the formation of dis-
turbances within freeway queues. This objective is important, be-
cause classical hydrodynamic traffic flow theory (Lighthill and
Whitham 1955; Richards 1956) does not offer any mechanism
as to how or why the commonly observed stop-and-go traffic

forms. As asserted by Ahn and Cassidy (2007), the formation of
the disturbances cannot be captured strictly via car-following in
the absence of LCM. But the study of LCMs is complicated
by the spatial nature of the maneuvers, the low density of conven-
tional traffic detectors, and the large number of vehicles that travel
in a freeway lane. These challenges are addressed by using the
instrumented probe vehicle to monitor the ambient traffic to
observe the traffic flow phenomena.

Among the body of research related to LCMs, some papers
focus on the macroscopic properties, such as the fraction or fre-
quency of LCMs (e.g., Kang and Chang 2004; Sheu 1999; Sheu
and Ritchie 2001). Some papers approach the topic from the micro-
scopic view, for example, by studying the distributions of time
headways (e.g., Nakatsuji et al. 2006), or by applying gap accep-
tance models to microscopic traffic simulation (e.g., Gipps 1986;
Yang and Koutsopoulos 1996; Ahmed et al. 1996; Zhang et al.
1998; Toledo et al. 2003; Hidas 2002, 2005). But there are rela-
tively few papers on how LCMs impact the traffic state or actually
cause delays to the traffic. Among these papers, Coifman et al.
(2006) develop a model to estimate the delay caused by LCMs
within a given lane relative to the situation in which no LCMs
had taken place. Laval and Daganzo (2006) propose a model to
explain the drop in discharge rate at bottlenecks due to LCMs
and provide several simulations that appear to replicate empirical
results observed from fixed-point detectors in earlier studies. Ahn
and Cassidy (2007) examine the impacts of vehicles entering a
given lane and how these vehicles contribute to the formation
and growth of disturbances within a queue. They focused only
on the entered lane, without considering the benefits to the exited
lane or the combined impacts across the two lanes. Wang and
Coifman (2008) used a set of complete vehicle trajectory data
extracted from video over a short stretch of roadway to examine
the mechanism underlying the delays in Coifman et al. (2006).
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Wang and Coifman show that the impacts of lane-change maneu-
vers are not balanced: vehicles following an entering vehicle gen-
erally complete their response and return to steady state quicker
than those following an exiting vehicle. This lane-change maneuver
accommodation time (LCAT) imbalance propagates upstream, and
it appears to be a source of speed and flow fluctuations (or oscil-
lations) within a queue. Although both lanes behind an LCM
undergo a disturbance that propagates upstream, the two lanes
do so out of phase with one another. While the net gain in flow
in the exited lane balances the net loss in flow in the entered lane
over time, the latter does so over a shorter period of time and thus
undergoes a larger displacement in instantaneous flow. So at any
given point in time and space the impacts in the two lanes do not
cancel each other; thereby creating a ripple that propagates up-
stream. But Wang and Coifman used trajectory data from a single
lane at a single facility (in the outside lane immediately upstream of
an on ramp), and they used only one hour of data collected on a
single day (all that was available at the site). The present work
seeks to demonstrate the same LCAT imbalance over a more di-
verse data set. Ultimately the empirical results from these studies
should help develop more robust microscopic LCM models that
better capture the impacts of LCMs on traffic.

As noted above, an instrumented probe vehicle is employed to
monitor the ambient traffic. The present work seeks to identify the
LCMs and classify them using the probe vehicle trajectories [from
differential global positioning system (DGPS)] and the ambient
traffic [via light detection and ranging (LIDAR) scans]. Key to this
effort is establishing the appropriate references: (1) a reference
trajectory in space to establish where the lanes are relative to
the vehicle’s current location, an important step to identify when
LCMs occur, and (2) the set of quasi-equilibrium states forming
the speed–spacing relationship, this set of states is then used to
identify the start and end of LCAT. The details of these processes
are presented in the following sections.

There are many examples where additional sensors are used on a
vehicle to detect threats to that vehicle either for collision avoid-
ance, driver behavioral studies, or for autonomous vehicle control,
but these systems generally are not employed for traffic flow theory
development. Traditionally traffic flow theory has been developed
using fixed-point detectors, with no direct information about
conditions between the detector stations. More recently a small
number of vehicle trajectory data sets have been collected over
short stretches of roadway (on the order of 0.5 km) for a short
duration (on the order of an hour); most notably the next generation
simulation (NGSIM) effort, (FHWA 2006a, b) and the Turner
Fairbanks data sets (Smith 1985; Smith and Mark 1985). The in-
strumented probe vehicle falls somewhere in between: providing
both the extensive spatial coverage of a network of fixed-point
detectors and the rich details of vehicle trajectories between the
fixed points, but only for the ambient traffic around the probe
vehicle’s own trajectory. Since the probe vehicle passages are sep-
arated by hours, days, or weeks, compared to NGSIM, it is much
less likely that all of the observations could be influenced by a
single confounding factor (e.g., weather or an incident). The three
different approaches are in fact a strong complement to one another,
each with its own strengths.

Overview

The remainder of this paper is organized as follows: the first section
provides a data description, including the probe vehicle sensors,
explanations of the data available, the routes, and other details.
The second section presents the tracking process for the LIDAR
data. The LIDAR data are rudimentary, merely providing the
distance to the nearest object at half-angle increments. So this

section provides an overview of how individual vehicles were seg-
mented from the background in the LIDAR data and then trajec-
tories for these vehicles were extracted relative to the probe vehicle
coordinate system. Unfortunately, if the probe vehicle undertakes
an LCM, the sensors’ frame of reference moves, and from the sen-
sor data it will look as if all of the tracked vehicles moved to the
opposite direction. So the third section describes how a reference
trajectory was generated and used to identify LCMs both by the
probe vehicle and the ambient traffic, without a priori knowledge
of the lane locations. The fourth section then defines the process
underlying the lane-change accommodation time calculation via a
set of reference quasi-equilibrium states representing drivers’
preferred speed–spacing relationship. The LCAT is then calculated
for many maneuvers in congested conditions (with speed less than
72 km∕h during the LCM). The results show asymmetry in the
LCAT when the probe vehicle follows LCMs by entering and
departing lead vehicles. The asymmetry in LCAT also holds when
the probe vehicle undertakes LCMs, either decreasing or increasing
the relative spacing as it changes lanes and thus, changing lead
vehicles. Finally, the paper closes with the conclusions of this work.

Data Description

Sensors

A van equipped with multiple sensors is used as the probe vehicle
for data collection, shown in Fig. 1. As noted on the figure, there
are five types of sensors installed on the van. Only two of the
sensors are used in this research, namely: the forward-facing
LIDAR, and the DGPS. For validation purposes, there is also a
camera to capture 320 × 240 pixel digital images of the forward
view at 1 Hz.

The forward-facing LIDAR uses a laser beam to measure the
distance to surrounding objects. It scans continuously from in a
horizontal plane, with a frequency of 3.3 Hz, an angular coverage
of 180°, and a 0.5° angular resolution. The range of the LIDAR
sensor is 81.91 m, with a resolution of 0.01 m.

The DGPS receiver used in this work is a Trimble AG132 GPS
receiver with Omnistar VBS corrections. It is an L1 only (single
frequency) receiver with 12 channels. Omnistar VBS corrections
are processed in real time. According to the receiver specifications,
the DGPS data are accurate to within 1 m for 95% of the time. The
1-Hz DGPS data includes the following information: time stamp
(seconds after midnight), latitude (degrees), longitude (degrees),
velocity (meters/second), heading (radians), differential status,
and altitude (meters). The DGPS data might include large transient
errors (compared to the resolution) due to occlusion or multipath,
which usually happens as the vehicle passes under an overpass or
other occluding roadside feature, as discussed below in the section
about identifying lane-change maneuvers.

Routes and Other Details

The driver of the probe vehicle is instructed to drive on one of two
different routes in Columbus, Ohio. Both routes begin in the central
business district (CBD) and head north along I-71. The first route is
termed the travel-time route, in which the driver completes two
50-km round trips from SR-315 to Polaris Pkwy on I-71 (each
round trip termed a travel-time run). The driver is instructed to
drive in the second lane from the center of roadway, except when
choosing to overtake the vehicle ahead of him or her. After prelimi-
nary analysis, it was found that the section of I-71 from North
Broadway to Polaris Parkway is typically free flowing, so a new
route was deployed in the course of this research to focus on
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the segments where congestion is most common. Termed the free-
style route, this new route differs from travel-time route in two im-
portant ways. First, the driver will complete three 23-km round trips
from SR-315 to North Broadway on I-71 (similarly, each round trip
termed a free-style run). Second, because the LCM behavior on the
road is of particular interest, the driver is free to choose any lane at
any time, hence the term “free-style”.

All of the data collected on a given tour of a route comprise a
single data set. Data were collected between June 2005 and August
2006. A total of 29 travel-time route data sets and 16 free-style route
data sets are used for this research. So the portion of I-71 between the
CBD and North Broadway is observed a total of 106 times in each
direction because there are two round trip runs in each travel-time
route, and three round trip runs in each free-style route. The data
were collected by six different undergraduate student drivers, but
no distinction is made among the drivers in the analysis.

Tracking

The LIDAR provides rich information about the surrounding ve-
hicles. Every 0.3 s, the LIDAR scans the surrounding objects in
a plane roughly 0.5 m above the ground. The range and angular
information produces a 2D image of the position of the nearest
object (within the range of the sensor) at each angle sampled. Such
an image is called a frame throughout the rest of the paper. To
illustrate this process, Fig. 2(a) shows a hypothetical top-down
view of the roadway with the instrumented vehicle shaded at
the bottom. The LIDAR sweeps 180°, at 0.5° increments [Fig. 2(b)],
and receives returns from vehicles and fixed objects [Fig. 2(c)].
Finally, Fig. 2(d) shows the resulting frame of data returned from
the LIDAR scan relative to the vehicle coordinates.

Ultimately the goal is to track the distinct vehicles throughout
the duration that they reside in the LIDAR field of view, thereby
producing vehicle trajectories relative to the probe vehicle’s trajec-
tory. A given target will appear differently in the frame depending
on the relative position of the object to probe vehicle, and it is
not always immediately apparent whether a target is a vehicle or a
stationary object, both may take on a similar appearance. The ve-
hicles need to be segmented from stationary objects and from one

another. Based largely on the work by Wang and Coifman (2005,
unpublished internal report), Gao and Coifman (2006), and Gao
and Coifman (2007), this tracking task is split into three compo-
nents: the grouper, the classifier, and the tracker. Each component
is described below. While the details of the basic tracking process
can be found in the papers by Gao and Coifman, this section briefly
reviews the tracking process. First, the grouper clusters the LIDAR
data points of each frame into discrete objects based on the Euclid-
ian distance between the data points. Thresholds in distance
are set empirically to ensure that data points from the same object
(vehicle or stationary objects) are usually grouped together, while
also being segmented from all other discrete objects.

Next, the classifier examines each discrete object reported
by the grouper in the frame. Using the shape and the history from
preceding tours, a given object is classified to differentiate vehicles
from roadside boundaries. The shape of a vehicle cluster can be a
horizontal line segment, a vertical line segment, or a combination of
the two in an L shape (or reverse L shape), depending on the relative
position of the object to probe vehicle. Many stationary nonvehicle
objects can take on these same appearances as the vehicles. The
nonvehicle objects that are not readily distinct from vehicles can
be distinguished if the history from many runs is employed, and
the observed objects from the probe vehicle’s coordinates are
projected to the world coordinates. A given stationary nonvehicle
object will be observed at the same location on all runs in which it is
not occluded by vehicles, while the vehicles will be observed at
random locations on the roadway with a much lower density. After
many runs, the locations with stationary objects will have a high
frequency of observations, while the intervening locations with
vehicles will have a lower frequency of observations. Gao and
Coifman (2007) use this fact to identify the regions that are on
the road. If a cluster is on the road it is considered to come from
a vehicle and ignored otherwise.

The on-road clusters are considered to be vehicles and only
these clusters are tracked. A Kalman filter is used to model the
2D vehicle position relative to the LIDAR sensor [i.e., the two axes
in Fig. 2(d)], assuming constant relative speed and it is then used to
estimate the vehicle position in the next frame. The association of
vehicles between frames is based on the Euclidian distance between
the estimated position from the Kalman filter and the measured

Fig. 1. Instrumented probe vehicle with the various sensors highlighted
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position of clusters observed in the current frame. The thresholds
for distance are also set empirically. The methodology is able
to extract information about the 3D trajectories (x, y, t) of the
surrounding vehicles relative to the probe vehicle.

Here, Fig. 2(e) shows an example of the forward LIDAR “view”
from the van and Fig. 2(f) the concurrent digital image from the
camera. The LIDAR sensor is at ð0; 0Þ. The targets have been
grouped, as shown with boxes around the cluster of points from
each vehicle; classified, as shown with points for vehicles and
“x” for stationary background objects; and vehicles tracked, as in-
dicated by a unique target number for each vehicle cluster. Hence-
forth an individual cluster will be called a target vehicle. The field
of view of the camera is narrower than the LIDAR scan, so target
vehicle 4,165 is evident on the left-hand side of the image.

Identifying Lane-Change Maneuvers

Moving beyond earlier tracking efforts, the present work seeks to
explicitly detect lane-change maneuvers and measure the associ-
ated disturbances.

Identifying All the LCMs Relative to the Probe Vehicle

With the 3D trajectory information relative to the probe vehicle
coordinates, the process of identifying LCMs among the target
vehicles is conceptually simple. Namely, one can find when a target
vehicle has a lateral displacement approximately equal to one
lane width (3.6 m). While such a lateral displacement is indicative
of an LCM, it will arise both when a target vehicle changes lanes
and when the probe vehicle itself changes lanes. Simply put, an
LCM by the probe vehicle in one direction will result in the appar-
ent phantom LCM of all surrounding vehicles to the opposite
direction in the LIDAR data. The probe vehicle’s LCMs will be
accounted for via the reference trajectory presented in the next

section. At this first stage the simple displacement methodology
has the following limitations.
1. When an LCM occurs, the relative motion information does

not indicate which of the two sources occurred: the probe
vehicle changed lanes or the target vehicle changed lanes.

2. When a tracked vehicle makes an LCM at the same time as the
probe vehicle, it may appear as if no LCM occurred, but there
are actually two LCMs (one by the probe vehicle and one by
the target vehicle).

3. When the road merges (or diverges), vehicles coming from (going
to) a different origin (destination) than the probe vehicle will ex-
hibit non-LCM lateral motion. If care is not taken, their lateral
motion may erroneously be attributed to LCMs when in fact their
lane of travel is not parallel to the probe’s lane of travel.
The first two points can be addressed by using the positioning

data from the DGPS and other sensors to independently determine
when the probe vehicle changes lanes, as will be done in the next
section. The final point often occurs at ramps. The problem cannot
be solved unless additional information about the roadway geom-
etry is employed. Because the probe vehicle used in this study
rarely travels in the outside lane, the impacts of the third point
are mitigated by excluding any LCM that does not directly involve
the probe vehicle. Thus, the scope is limited to LCMs that occur
between the probe vehicle’s current lane and an immediately
adjacent lane. This step has the added benefit of ensuring that there
is an unoccluded view of the lead vehicle during the LCM.

Establishing a Reference Trajectory and Identifying the
Probe Vehicle LCMs

One challenge of this work is to identify LCMs without a priori
knowledge of where the lanes are. To accommodate for the fixed
geometry of the roadway multiple probe vehicle trajectories
through the roadway segment are integrated to establish a reference

Fig. 2. Example of LIDAR detection (a) top-down view of the roadway, the instrumented vehicle is shaded at the bottom; (b) forward LIDAR scans
the world; (c) receiving returns from vehicles and fixed objects; (d) the resulting frame of data returned from the LIDAR scan relative to the vehicle
coordinates; (e) an actual sample of the forward LIDAR “view” after segmenting vehicles in one frame; (f) the concurrent digital image
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trajectory in a single lane that is then used to identify the other dis-
crete lanes, as discussed in the first subsection. To simplify the pro-
cess this derivation uses only the travel time runs, because the
drivers are proscribed to maintain a specific lane most of the time
(this reliance on a dominant lane of travel can be dropped with only
minor modification to the analysis). But the process is complicated
by the fact that there are a few mandatory LCMs (MLCs) along
the probe vehicle’s route and thus, at these points the reference
trajectory jumps from one lane to another if care is not taken to
identify MLCs by the probe vehicle, as discussed in the second
subsection. After controlling for the MLCs, the reference trajectory
falls in a single lane throughout the run and travel in the other lanes
is evident by a fixed lateral displacement by an integer number of
lane widths. The revised reference trajectory is then used to identify
discretionary LCMs (DLCs) by the probe vehicle as discussed
in the third subsection. The reference trajectory is also used in
subsequent sections to find LCM by the ambient vehicles.

Establishing the Reference Trajectory

The objective of this section is to establish a robust reference
trajectory that defines a curvilinear coordinate system, with the ab-
scissa corresponding to the lateral distance (across the road), and
the ordinate corresponding to the longitudinal distance (along the
road). This reference trajectory is built from many noisy individual
trajectories recorded in the probe vehicle DGPS. The data used here
are the travel-time run data sets, because the driver is instructed to
stay in the second lane from the center of roadway except when
overtaking. Thus, the trajectories should usually overlap in the
same lane and most of the time a given travel-time run trajectory
should fall within close vicinity of the reference trajectory, with
occasional deviations arising from LCMs or GPS errors.

First, an arbitrary trajectory, say T1, is chosen, and the points on
T1 are initially taken to be ð0; YÞ, where Y denotes the longitudinal
distances along T1. Next, the coordinates ½X0

iðYÞ; Y� of all the other
trajectories Ti (i ¼ 2 to n, where n is the total number of trajecto-
ries) are calculated by projecting them laterally onto T1, where
X0
iðYÞ denotes the lateral distance of Ti to T1 at location Y . Next,

the reference trajectory is defined as the median of the lateral dis-
tances of all trajectories at the given Y , X″ðYÞ ¼ medianX0

iðYÞ. The
reference trajectory is set to be ð0;YÞ and the lateral distance to the
reference trajectory, X″

iðYÞ, is calculated for each run (so at this
point, in general, T1 will have a nonzero abscissa at a given Y).
The median was used rather than the mean because the median
is less sensitive to outliers in the dataset, e.g., the median will
not be affected by occasional DLC while the mean would yield
a reference trajectory that includes the impacts of every DLC.
In the event that the probe vehicle was free to choose lanes, the
methodology could be modified to use the modes of the lateral dis-
tribution instead of the median.

Identifying Mandatory LCMs by the Probe Vehicle

To measure lateral position across the roadway, it is necessary to
correct for the mandatory LCMs. The MLCs occur when the probe
vehicle has to shift lanes to follow the given route, e.g., because of
geometric features. While the driver may need to change lanes for
an MLC in every run, the exact location will vary from one run to
another; i.e., the MLC will occur over a range of Y coordinates.
Consider an MLC observed across many trajectories. One of the
trajectories will begin the MLC farther upstream than all of the
others. Moving downstream, more and more of the trajectories will
change lanes until the last trajectory does so. As one progresses
downstream through this window, more and more trajectories will
shift away from the median used for the reference trajectory (in the
direction of the MLC) until the reference trajectory jumps over to

the new lane and the remaining trajectories now become prominent
on the opposite side of the reference trajectory until reaching the
end of the window. Compared to the reference trajectory, most indi-
vidual probe vehicle trajectories will typically appear to make two
LCMs. One of these LCMs is that individual trajectory’s true MLC
and the other is false LCM that actually captures the lateral jump in
the reference trajectory. To illustrate this point, in the travel-time
run data sets, around longitudinal distance 5 km, there is an
MLC to the right (in this case caused by the combination of a lane
drop and the driver’s instruction to stay in the second lane). Here,
Fig. 3(a) shows the lateral distance of all the travel-time run trajec-
tories with respect to the reference trajectory, many of the trajec-
tories make the MLC prior to 5.7 km as evidenced by an LCM to
the right followed by the false LCM to the left when the reference
trajectory changes lanes at 5.7 km. Other trajectories make the
MLC after 5.7 km, so in these cases the false LCM to the left comes
before the true MLC to the right. Finally a few of the trajectories
make the MLC close to 5.7 km and show little evidence of any

Fig. 3. Probe vehicle MLCs around longitudinal distance 4.3 km along
the travel-time run, all runs travel in the direction of increasing long-
itudinal distance (a) lateral distance of all trajectories with respect to
reference trajectory; (b) mean of lateral distances; (c) difference trajec-
tory with respect to roadway; (d) all trajectories with respect to roadway
after combining (a) and (c)
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LCM because the true and false maneuvers cancel one another in
this plot.

Within the window, the individual MLCs disrupt the reference
trajectory because it uses the median lateral position. Fortunately,
the MLC will have a different impact on the mean of lateral posi-
tion; rather than changing abruptly, the mean lateral position will
gradually shift along the length of the longitudinal range in which
the MLC fall. The difference between the mean and median is used
to identify locations of MLCs in the reference trajectory. This dif-
ference will shift first in the direction of an MLC and then when the
median shifts lanes, the difference will jump to the opposite side of
the reference trajectory. Here, Fig. 3(b) shows the mean of lateral
distances relative to the reference trajectory, and as expected, the
mean first drifts to the right and then crosses zero and jumps to the
left when the reference trajectory changes lanes to the right at
roughly 5.7 km.

Although the reference trajectory jumps lanes over a short
longitudinal distance, it does not do so instantaneously and so
this work sought to capture its progression. Almost all of the
trajectories exhibit the same false LCM to the left due to the refer-
ence trajectory actually changing lanes to the right, the only excep-
tions being those few trajectories that make the LCM concurrent
with the reference trajectory. But in this reference plane, the indi-
vidual trajectories that made the maneuver prior to 5.7 km are one
lane width (3.6 m) below the trajectories that do so after [the
two dense regions in Fig. 3(a) at 5.7 km]. So 3.6 m is added to
those trajectories that make an LCM prior to the zero crossing in
Fig. 3(b). The mean lateral position across all of the trajectories
(including those shifted 3.6 m) is then subtracted from the reference
trajectory, resulting in Fig. 3(c). Throughout the remainder of this
paper, the reference trajectory is assumed to incorporate this MLC
correction unless explicitly noted otherwise. In Fig. 3(d) the cor-
rected trajectories are shown with respect to the roadway. Each
trajectory now exhibits a single MLC (to the lane on the right)
without any of the phantom LCMs due to the reference trajectory
changing lanes. After subtracting out the shift in the reference tra-
jectory, the exact locations of the MLCs in a given data set can be
found using the same techniques, as presented in the next subsec-
tion to identify discretionary LCMs.

Identifying Discretionary LCMs by the Probe Vehicle

Given the reference trajectory and a specific probe vehicle trajec-
tory, the lateral distance to the reference trajectory is found, e.g., as
shown in Fig. 3(d). During a discretionary LCM (DLC), the probe
vehicle should be offset laterally by a lane width, which is roughly
3.6 m. So threshold lines are set with lateral distance 1.8 m from
the reference trajectory. The threshold lines correspond roughly to
the lane lines, and whenever a trajectory crosses any threshold line
it is considered a DLC.

Most of these DLCs in the travel-time run data sets are from the
driver overtaking another vehicle and then returning to the original
lane. An overtaking will usually show up as a lateral deviation
beyond a threshold line, and then return back to the original lane
after some time, e.g., as shown in Fig. 4. But not all of the lateral
deviations beyond a threshold are due to DLCs; some disturbances
come from GPS errors due to obstructions and multipath [e.g., one
can see disturbances around 8 km in Figs. 3(a) and 3(d) that arise
from an overpass]. Fortunately, most of these GPS positioning
errors are large in magnitude but short in duration, e.g., while
reacquiring a lock on the satellites during one or two samples after
emerging from an underpass. Such short transient errors can be
quickly filtered out using a moving median (e.g., as per Coifman
and Dhoorjaty 2004) on the time-series lateral distance from the
reference trajectory. In contrast, a real overtaking maneuver will

usually take longer. So the out-of-threshold-line time is calculated
whenever a trajectory is beyond the first lateral threshold line.

The camera imagery was used to verify the source of all depar-
tures from the lane, so as to differentiate between an overtaking
and a disturbance. Here, Fig. 5 shows the cumulative distribution
function (CDF) of the out-of-threshold-line time. Based on the
manual verification of 30 actual overtaking maneuvers and 57 dis-
turbances, most of the overtaking maneuvers can be differentiated
from the disturbances simply from a minimum out-of-threshold-
line time. No overtaking is missed if the time threshold is set
to 10 s. Assuming these data are representative, two successive
DLCs in opposite directions will not typically occur within 10 s.

Across the data set there are two GPS errors that are erroneously
accepted as DLC by this simple filter. The filter assumes a straight
line trajectory between successive GPS points, without accounting
for the time step between GPS observations. However, on two
passes the GPS dropped out while the van was on a curve and

Fig. 4. An example of the probe vehicle executing an overtaking man-
euver, comprised of two successive LCMs

Fig. 5. CDF of the out-of-threshold-line time for overtaking and GPS
disturbance
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the straight line trajectory assumption resulted in a large lateral
deviation from the reference trajectory. For the present study,
the two DLC errors are excluded from further consideration and
the manual classifications from Fig. 5 are used. In general, this
problem can be addressed by suppressing any possible DLC that
occur while the GPS is momentarily unavailable.

Returning to the Target Vehicle Trajectories

After establishing a probe vehicle reference trajectory with correc-
tions for MLCs and accounting for any DLCs in the specific probe
vehicle trajectory, there is now (X, Y , t) from the probe vehicle run.
The 3D trajectories of the surrounding vehicles measured relative
to the probe vehicle (x, y, t) are then projected to their physical
location along the road, by taking the sums, XðtÞ þ xðtÞ, and
YðtÞ þ yðtÞ. Fig. 6 shows two examples of target vehicle LCMs.
In both cases the probe vehicle did not change lanes and although
not shown, the probe vehicle is located at ½XðtÞ; 0� on the plots. In
each case the trajectory shows ½XðtÞ þ xðtÞ;YðtÞ þ yðtÞ� for the tar-
get vehicle. In Fig. 6(a), a vehicle in the left lane changes into the
current lane of the probe vehicle. In Fig. 6(b), a vehicle in the right

lane first enters the probe vehicle’s current lane and then continues
to the left lane.

Lane-Change Accommodation Time

Much of traffic flow theory is built upon the fundamental relation-
ship between speed, flow, and density; or alternatively in the
context of car following, between speed, headway, and spacing.
In either case, the traffic state (i.e., the three parameters) is typically
assumed to fall on or near a single curve, e.g., flow versus density
or speed versus spacing relationships. Shock waves and other
disturbances can cause a transient deviation away from the curve,
but the traffic state quickly returns to the curve. Much of the
existing body of traffic flow theory ignores LCMs, assuming the
impact is negligible. But when an LCM occurs, the spacing of
several vehicles will abruptly change, and each involved vehicle
will have to adjust their speed to return to the driver’s preferred
speed–spacing relationship. This lane-change accommodation time
does not occur instantaneously, so each LCMwill perturb the traffic
state for a short time, and thus, also perturb the vehicle’s trajectory.
Since empirically observed speed–spacing relationships are noisy,
as will be discussed shortly, one has to use thresholds of some form
to define when a driver is within his or her steady state speed–
spacing for the given conditions.

Under ideal conditions an LCM in congestion will not reduce
the net flow or increase the net delay across the two lanes, but one
lane benefits at the expense of the other for a short duration, propor-
tional to the LCAT. As shown in Wang and Coifman (2008), the
fact that the LCM disrupts the lead vehicle trajectory in a given
lane means the following vehicles must also follow the perturba-
tion, disrupting the traffic state in that lane and the net result will be
manifest as a ripple propagating upstream. This provides one
source for disturbances to form in queues and potentially be a
source of unstable stop-and-go traffic. It is also important to note
that the LCAT is experienced by the drivers as they travel down the
road. The resulting disturbances propagate upstream and when they
are viewed from a stationary location on the side of the road, the
duration of the impact of a given disturbance is longer than that
experienced by the driver (being a function of the vehicle speed
and the speed that signals propagate upstream). Wang and Coifman
found that the LCAT was imbalanced between the exited lane and
the entered lane; thus, the LCM also induces a ripple in the traffic
state when summed across lanes. But Wang and Coifman only used
data from one hour, in one lane, on one facility. This section seeks
to provide an independent validation of the LCAT imbalance at
other locations, using the instrumented probe vehicle data.

This work examines the speed–spacing relationship from the
probe vehicle, where spacing is defined from the rear bumper of
the lead vehicle to the rear bumper of the probe vehicle. Of course
one must define a preferred speed–spacing relation before being
able to detect deviations from it. In reality the speed–spacing
data are very scattered, so the first subsection defines the quasi-
equilibrium state to determine when a driver begins and ends their
accommodation to an LCM. The second subsection develops the
lane-change accommodation process, starting when the time-series
speed–spacing relation departs from the defined quasi-equilibrium
state before an LCM, and ending when the time-series speed–
spacing relation first returns to the quasi-equilibrium state after
the LCM. The third subsection presents the results and analysis
of the measured LCATs.

Fig. 6. Two examples of finding LCM of an ambient vehicle based on
LIDAR tracking results: (a) from the left lane; (b) to the left lane (the
earlier LCM from the right lane is not highlighted); lateral distance is
relative to the probe vehicle’s lane of travel; the arrows indicate the
direction of the LCM, long dashed lines show the lane lines, and short
dashed lines show the center of lane with a tolerance of 0.3 m
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Quasi-Equilibrium State

This section defines quasi-equilibrium state in the speed-spacing
plane. To address the fact that the speed–spacing relationship
may vary from data set to data set, all of the individual speed–
spacing measurements from all of the available data sets are plotted
together, yielding the large cloud of points in Fig. 7(a). In Fig. 7(b),
the corresponding density of the data points is shown, where unit
density is defined as the density that would be observed if the data
were uniformly distributed over the region of speed–spacing plane
shown in the plot.

Next, segmenting the data in to speed bins every 3:6 km∕h, the
spacing distribution is evaluated in each bin. The following percen-
tiles of spacing are calculated for each speed bin: 30%, 35%, 40%,
60%, 65%, and 70%, and are shown with the curves in Fig. 7(c).
The first Highway Capacity Manual (BPR 1950) employed the re-
sults from 23 studies conducted between 1924 and 1941 that ex-
amined the speed–spacing relation for the purpose of estimating
capacity. Among the 23 studies, 22 adopted a speed–spacing rela-
tionship in the form of a second-order polynomial

S ¼ αþ βV þ γV2 ð1Þ

were S = spacing and V = speed. The parameters have specific
interpretations: α = the effective vehicle length: β = the reaction
time; and γ = the reciprocal of twice the maximum average decel-
eration of the following vehicle. Although the origins are more
than 50 years old, this model is still often used today (e.g., Rothery
2001). Borrowing this framework, the percentile curves from
Fig. 7(c) are smoothed via a second-order polynomial linear regres-
sion, as shown in Fig. 7(d). The R2 value is at least 0.98 for each
of the six fitted polynomial curves.

The smoothed 35th and 65th percentile curves are taken as the
bounds of the quasi-equilibrium state at the given speed. The choice
of 35th and 65th percentile curves to define the quasi-equilibrium
state was somewhat arbitrary. These bounding percentile curves
were chosen so that for most of the time in car following (i.e., away
from any LCM) the speed–spacing relation will lie within the
quasi-equilibrium bounds, and when an LCM occurs, the deviation
in spacing will be large enough to exceed the quasi-equilibrium
bounds. The other percentiles are used for sensitivity analysis to

Fig. 7. Speed–spacing relationship from the probe vehicle: (a) all data on all runs; (b) density plot showing the density of the data normalized with
respect to the average density; the resulting percentile curves across each speed bin; (c) raw; (d) after second-order polynomial fitting
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ensure there are no significant impacts arising from the choice of
specific percentiles.

Of course this approach involves other trade-offs. Presumably
the data in a given run would yield a tighter range, e.g., the data
in Fig. 7 come from six different drivers. But this approach to
calculate the percentile lines requires many samples in each bin.
So the specificity of a given run was sacrificed for the benefit
of the much larger sample size of the entire data set; this fact is
particularly important for bins that have few observations in a
given run.

Lane-Change Accommodation

With the quasi-equilibrium state one can now identify periods when
the driver deviates from the preferred speed–spacing relation. The
quasi-equilibrium state is employed solely to decide when a driver
begins and ends his or her accommodation to an LCM. In turn, the
lane-change accommodation is used to compare the behavior of
drivers behind a vehicle that enters and a vehicle that departs
the lane. As illustrated below, the specific values of the LCAT
in this study are highly dependent on many parameters, and they
are only meant for relative comparisons when those parameters
are held constant. The LCAT is defined as beginning when the

speed–spacing relation last leaves the quasi-equilibrium state
(crossing a bounding percentile line) immediately prior to the
LCM and lasts until the speed–spacing relation first returns to
the quasi-equilibrium state (again crossing a bounding percentile
line) immediately after the LCM. During the accommodation
process, the driver following the maneuver adjusts speed in an ef-
fort to return to quasi-equilibrium state behind the new lead vehicle.

The cloud of points in Fig. 8(a) shows all of the speed–spacing
measurements recorded on a travel-time run from November 16,
2005. The dark set of points highlights the time-series progression
from this cloud immediately before and after an LCM, while the
dashed lines show the percentile curves from Fig. 7(d). The arrow
shows the progression of the highlighted time-series data and there
is approximately 0.3 s between each data point in the series due to
the LIDAR sampling rate. The square denotes the instant of
the LCM, in this case a vehicle enters the lane, and the spacing is
reduced after the LCM. As illustrated in this example, the following
driver may begin accommodating by creating a gap and taking a
longer spacing before the entrance is recorded. Whenever this sit-
uation occurs, at the instant the entrance is recorded, the spacing
abruptly jumps from the right of the quasi-equilibrium state to the
left of it. If such a jump occurs it is not taken as the end of the lane-
change accommodation because the time-series does not return to
the quasi-equilibrium states at this instant. The six numbers above
the percentile curves indicate the given crossing time in seconds
relative to the instant the LCM occurred, i.e., the instant when
the time series crossed the respective curve. The crossing times
of the 30th, 35th, and 40th percentile curves are all quite close
(3.0, 3.3, and 3.5 s, respectively), similarly, the crossing times
of the 60th, 65th, and 70th percentile curves are also quite close
(�15:9, �15:6, and �15:3 s, respectively), indicating that the
choice of the specific percentile thresholds is not critical in
this case.

Drivers may not make accommodations for an LCM ahead of
them when traveling at free-flow speed because the lead vehicle is
so far away that there is no interaction between the vehicles. To
ensure that drivers are car-following, this research is limited to
congested conditions (below 72 km∕h). Using all of the complete
observed LCMs when the speed is below 72 km∕h, Fig. 8(b) shows
the distribution of the difference of crossing times between succes-
sive percentile curves (30th to 35th, 35th to 40th, 60th to 65th, and
65th to 70th). The median time to cross the successive percentile
curves is 0.3 s, and 86% of the successive crossing times are within
1 s. As noted earlier in the section on identifying lane-change
maneuvers, the present work excludes any LCM that does not
directly involve the probe vehicle. Out of the 167 LCMs with speed
less than 72 km∕h from all data sets, only 61 LCMs have a com-
plete accommodation process. The remaining LCMs are excluded
from further analysis due to the following reasons: 86 LCMs are
interrupted by another LCM; 26 LCMs transition into a free-flow
state before the end of the LCAT; finally 45 LCMs the time-series
speed–spacing relation itself is not complete because the LIDAR
lost the lead vehicle and, thus, no spacing is available.

Results and Analysis

In the case of LCMs immediately in front of the probe vehicle, this
research differentiates between when another vehicle enters the
probe vehicle’s lane (entering vehicle) and when the lead vehicle
departs probe vehicle’s lane (departing vehicle). The Fig. 9(a)
shows the CDF of LCAT for entering and departing vehicles.
The CDF of LCAT for departing vehicles is predominantly to
the right of the CDF for entering vehicles, i.e., the LCAT for de-
parting vehicles is typically larger than that for entering vehicles.

Fig. 8. Lane-change accommodation example: (a) speed–spacing re-
lationship as seen on one run, highlighting the portion surrounding
an LCM; the six numbers show the times (in seconds) when the high-
lighted curve crosses the respective percentile lines; the times are
relative to the actual LCM time; (b) Ddistribution from all LCM of
the time difference between adjacent percentile lines
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Similarly, when the probe vehicle undertakes an LCM, this
research differentiates between whether the lead vehicle in the
new lane is closer (decreasing spacing) or farther (increasing spac-
ing) than the lead vehicle in the old lane. Fig. 9(b) shows the CDF
of LCAT for decreasing and increasing spacing maneuvers; here the
CDF of LCAT for increasing spacing is predominantly to the right
of the CDF for decreasing spacing, i.e., the LCAT for increasing
spacing is typically larger than that for decreasing spacing.

Both plots in Fig. 9 exhibit an asymmetry between the respec-
tive pair of CDFs. Tables 1 and 2 show the mean and median of the
LCAT for the distributions from Fig. 9, for those LCMs ahead of
the probe vehicle and by the probe vehicle, respectively. In either
case the results are intuitive; in the case of an entering vehicle or
decreasing spacing, the probe vehicle driver has no choice but to
respond quickly or risk following the new lead vehicle at an unsafe
spacing. But in the case of a departing vehicle or increasing spac-
ing, the driver can safely take his or her time to consume the excess
spacing and return to the quasi-equilibrium state. This asymmetry
is consistent with Wang and Coifman (2008), reaffirming their find-
ings that this imbalance is one source for disturbance formation and
growth in queues. The LCAT in the present work are in general
higher than those in Wang and Coifman, underscoring the fact that

LCAT is highly dependent on many parameters, and the use herein
is only meant for relative comparisons when the parameters are
held constant.

Conclusions

Lane-change maneuvers (LCMs) have been suspected of being a
source of traffic disturbances. To date there has been limited
research on the microscopic impacts of LCMs on traffic flow
due to the difficulty in collecting the necessary data. This paper
employs an instrumented probe vehicle to extend the microscopic
analysis beyond the limited periods and spatial coverage available
from the few publicly available microscopic vehicle trajectory data
sets, namely those from NGSIM and Turner Fairbanks.

The first objective of this paper is to provide independent val-
idation of the findings reported by Wang and Coifman (2008).
Wang and Coifman found that the LCATwas imbalanced between
the exited lane and the entered lane; thus, an LCM within a queue
induces a ripple in the traffic state that propagates upstream. As
summarized above, Wang and Coifman described how this imbal-
ance is one source for disturbances to form and grow in queues,
potentially being a source of stop-and-go traffic. But Wang and
Coifman only used data from one hour, in one lane, on one facility.
The present study used approximately 90 h of data, along an
extended corridor, but limited to a small number of vehicles around
the probe vehicle. Within this set, there were 167 LCMs during
congestion, but only 61 were uninterrupted. The new means to
measure the LCAT presented in this paper yields results consistent
with Wang and Coifman. Ultimately the empirical results from
these studies should help develop more robust microscopic
LCM models that better capture the impacts of LCMs on traffic.

The methodology of extracting information from the probe
vehicle data is just as important as the specific traffic phenomena
observed, because these tools will be of value in other studies. The
process of generating a reference trajectory to provide a common
reference frame to many runs through a corridor should benefit
various floating car studies and potentially even emerging cell
phone tracking or other active probe vehicle data streams. Though
if the drivers are free to choose any lane, the methodology for gen-
erating the reference trajectory may need to be modified to use the
modes of lateral displacement and look for an integer number lane

Fig. 9. CDF of accommodation time: (a) LCMs ahead of the probe vehicle; (b) LCMs by the probe vehicle

Table 1. Summary Statistics from the Distributions of the Lane-Change
Accommodation Process First Shown in Fig. 9(a) for LCM ahead of the
Probe Vehicle

LCAT Mean Median Standard deviation

Departing vehicle (17 samples) 15.6 14.0 8.8

Entering vehicle (27 samples) 12.4 8.3 10.3

Note: All times are in seconds.

Table 2. Summary Statistics from the Distributions of the Lane-Change
Accommodation Process First Shown in Fig. 9(b) for LCM by the
Probe Vehicle

LCAT Mean Median Standard deviation

Increasing spacing (3 samples) 17.9 17.0 4.7

Decreasing spacing (8 samples) 9.5 7.8 9.6

Note: All times are in seconds.
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widths. Next, the process of identifying both MLC and DLC by the
probe vehicle to establish the lateral position across the roadway
should prove to be equally beneficial. Once the probe vehicle’s
LCMs have been accounted for, the process of identifying LCMs
from the surrounding vehicles in the LIDAR data becomes straight-
forward, and this process will likely prove beneficial for similar
studies in the future. Finally, the process of generating the quasi-
equilibrium state among the very scattered speed–spacing data
should prove beneficial for other studies as well.
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