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1 Clearly, only part of the intersection cross section
A separate turn phase is often used on the approach leg to an intersections with heavy left
turns. This wastes capacity on the approach because some of its lanes cannot discharge
during its green phases. The paper shows that the problem can be eliminated by reorganiz-
ing traffic on all the lanes upstream of an intersection using a mid-block pre-signal. If driv-
ers behave deterministically, the capacity that can be achieved is the same as if there were
no left turns. However, if the reorganization is too drastic, it may be counterintuitive to
drivers. This can be remedied by reorganizing traffic on just some of the available lanes.
It is shown that such partial reorganization still increases capacity significantly, even if
drivers behave randomly and only one lane is reorganized. The paper shows how to opti-
mize the design of a pre-signal system for a generic intersection. It also identifies both, the
potential benefits of the proposed system for a broad class of intersections, and the domain
of application where the benefits are most significant.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Left turns can be a significant hindrance to the smooth flow of traffic in networks involving at-grade intersections. If left
turns are sufficient in number, separate left turn phases are typically introduced at signalized intersections to handle the
flow (Newell, 1989). The problem with left turns is also indirectly addressed by generic optimization methods devised to
determine the duration of signal phases (e.g., Webster, 1958; Allsop, 1972), which were later generalized to include the
grouping of streams into phases (e.g., Improta and Cantarella, 1984; Gallivan and Heydecker, 1988; Silcock, 1997), and more
recently to determine the number of lanes that should be made available to the streams (Wong and Wong, 2003).

The above-cited works are concerned with the reduction of vehicle delays when the intersection approach is undersat-
urated; i.e., when it has sufficient capacity to serve the demand. Vehicle-actuated (VA) signal control is often used to further
reduce this delay by dynamically allocating green times to accommodate cyclic fluctuations in demand. Although VA control
can reduce delay on undersaturated approaches (Greenough and Kelman, 1999; Peck et al., 1999; Sussman et al., 2000), it is
well known that VA signals can do little to increase the capacity of oversaturated approaches (Newell, 1989; Lo and Chow,
2004). The effects of oversaturation can only be eliminated by reducing demand or increasing capacity. If nothing is done,
oversaturation can cause gridlock at the network level (Daganzo, 2007).

Left turns in large numbers contribute to the oversaturation, because they require separate green phase allocations
and these sub-phases reduce intersection capacity.1 These capacity problems are often avoided in practice by banning and
re-routing the offending left-turns. This can be done in different ways; e.g., with median U-turns, jughandles, superstreets,
paired intersections, quadrant roadways, and bowties (see e.g. ATTAP, 2006; Rodegerdts et al., 2004). These strategies are good
. All rights reserved.
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is used to discharge vehicles during each of these green sub-phases.
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Fig. 1. Continuous flow intersection. Arrows show the movements allowed during the intersection’s green phase for the horizontal directions.
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because they eliminate both, the left turns and the need for left turn phases, thereby increasing the intersection capacity. But
the strategies also force left-turning vehicles to go through the intersection multiple times, increasing demand there. This off-
sets some of the benefit. In addition, most re-routing designs involve construction and require substantial space, which may not
be available.

In view of this, this paper proposes a way of increasing capacity without banning left turns or modifying the intersection
in a way that requires major construction. The focus of the analysis is a generic approach leg to a 4-way intersection con-
trolled by a pre-timed traffic signal. The approach receives two green sub-phases: one for left turns only, and the other
for the exclusive use of through and right-turn movements.

Currently, intersections of this type do not operate efficiently because during the protected left-turn sub-phase, only the
lanes devoted to left turns discharge. Conversely, during the through sub-phase only the through (and right turn) lanes dis-
charge. This is inefficient because many lanes go unused during the green phases. The problem is compounded when lanes
are shared by through and left-turn vehicles, which cannot fully discharge during either sub-phase due to blocking. Imagine
how much more capacity could be gained if all lanes could be made to fully discharge during both sub-phases. The paper will
show how this objective can be realized by dynamically re-organizing traffic upstream of the intersection with a pre-signal.

The idea of pre-signals is not new. They have been used in Europe to give buses priority for a long time (Oakes et al.,
1994). Pre-signal systems for both, buses and bicycles have been studied in Wu and Hounsell (1998) and Xuan et al.
(2009), respectively. Pre-signals have also been used in connection with left turns; see Fig. 1, which illustrates the ‘‘contin-
uous flow intersection (CFI)’’ concept (Al-Salman and Salter, 1974; Goldblatt et al., 1994). This concept resolves the left-turn
vs. opposing-through conflict at the pre-signals, as shown in the figure. Since the left-turn vehicles and opposing-through
vehicles are reorganized to avoid conflicts at the intersection, they can be served in a single green phase, and this increases
capacity. Interesting as it is, the CFI concept still has some drawbacks, however: (a) it requires permanent changes in layout,
which cannot be turned on and off as needed; (b) it wastes lane resources unless the demands for left and through vehicles
happen to be in the same balance as the lanes are marked; (c) it cannot be surgically deployed on a single approach of a 4-
way intersection—at least 2 approaches need to be involved; and (d) it precludes bus stops from being located on the far side
of the intersection.

The proposed design is similar in spirit but overcomes these problems. Since it can be deployed on a single approach leg, a
single approach will be the object of analysis. Section 2 describes the concept; Section 3 the optimum signal settings and
capacity formulae; and Section 4 discusses the results, including the spatial requirements of the system.
2. The concept

The basic idea is depicted in Fig. 2a. Flow is left to right. Note the pre-signal and its (dark) stop line. Upstream of the pre-
signal, lanes are marked by movement. These markings segregate left-turning vehicles (LVs) and through/right-turning
vehicles (TVs) onto separate sets of lanes.2 The figure does not show right turns for simplicity of exposition; but the system
performs just the same if they are included.
2 We assume that drivers can maneuver into their desired lanes as they approach the pre-signal, just as we would ordinarily assume that drivers can
maneuver into their desired lanes as they approach a conventional signalized intersection.



Fig. 2. The tandem intersection concept: (a) full tandem; (b) partial tandem; (c) general case. Rectangles indicate the size of the LV and TV queues in each
lane, and their order; they do not always indicate the actual extent of these queues.
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The pre-signal runs on the same cycle as the intersection signal and alternates giving green time to the two sets of lanes.
Downstream of the pre-signal, variable message signs (VMSs) instruct drivers of both vehicle types which lanes to use – pos-
sibly all of them as shown in Fig. 2a. It may be desirable to change these instructions as traffic conditions change. Therefore,
VMSs are preferred to lane markings because the former can be changed with time. The area between the pre-signal and the
signal will be called the ‘‘sorting area’’. This area is intended to contain those transient queues created by the different offsets
and phases of the signal and the pre-signal. The sorting area should be long enough to ensure that these queues do not spill
back to the pre-signal.

Here is how the system of Fig. 2a would operate for one cycle if at the intersection the LV-sub-phase leads the TV-
sub-phase. The pre-signal starts its cycle by giving the green to the LVs while the intersection signal is red. These LVs
advance into the sorting area using all the lanes and wait at the intersection stop line. The pre-signal then turns green
for the TVs, which line up behind the LVs, again using all lanes.3 With this arrangement, vehicles are efficiently
positioned to discharge using all the lanes when the intersection green phases start: first the LV-sub-phase, then the
TV-sub-phase. Of course, if the LV-sub-phase lags the TV-sub-phase then the order is reversed and the pre-signal starts
its cycle with the TVs.

The duration of the pre-signal phases (for LVs and TVs) should be chosen so that the number of vehicles of either type
discharged by the pre-signal at saturation is close to, but does not exceed, the maximum number that all the intersection
lanes can jointly discharge during the corresponding intersection sub-phase. In this way queues of either vehicle type clear
at the signal in every sub-phase so that blocking is avoided when sub-phases change. The pre-signal phases should also
ensure that if there is sufficient demand, then the discharged numbers should be close to this maximum. In this way both
signal sub-phases will be nearly saturated. This idea is illustrated in Fig. 2a by the two rectangular blocks in the sorting area.
These blocks represent the space needed for the maximum number of vehicles that the signal can discharge in its two sub-
phases. The sub-phase durations shall be denoted GL and GT, where the single-letter subscript refers to either LTs or TVs.
Lengthwise, these blocks span the maximum number of vehicles that can discharge from a single lane in a sub-phase. There-
fore, their lengths are proportional to GL and GT, as shown.

An advantage of the proposed pre-signal method when compared with approaches that require fixed infrastructure and/
or markings is that the phases and sub-phases of the two signals can be changed with the time-of-day to be in balance with
the time-varying percentage of turns. This produces (nearly) the same capacity as if left turns had been banned. A disadvan-
tage is that drivers are sometimes asked to be in a counterintuitive lane; e.g., note from Fig. 2a that some LVs occupy the
intersection’s right lane.
3 We assume that drivers will distribute themselves evenly over the lanes available to them.
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To alleviate this drawback, the full-tandem concept of Fig. 2a can be moderated with ‘‘partial-tandem’’ designs in which
only some of the lanes in the sorting area are shared by both types of vehicles; see Fig. 2b, where only two lanes are shared in
tandem. To avoid confusion with other types of shared lanes, these lanes will be called ‘‘tandem lanes’’ from now on. The
disadvantage of the partial-tandem concept is that it does not engage all the lanes fully in each sub-phase. To balance
user-friendliness with capacity needs, one can define for any application the smallest possible set of tandem lanes that will
meet demand.

Since the full-tandem case is a special case of partial tandem, we will from now on focus on the latter, often dropping the
word ‘‘partial’’. The most general case (illustrated in Fig. 2c) does not even require that the number of lanes at the signal and
the pre-signal be equal.
3. Capacity analysis

The capacity of tandem and conventional pre-timed intersection designs are compared here.4 Capacity formulae and
capacity-maximizing timing plans are developed, first for an idealized best case scenario in which vehicles behave determin-
istically, and then for a more realistic scenario that captures stochastic phenomena. Although the corrections introduced for
the latter reduce the ideal capacity, results show that the tandem design typically outperforms the conventional design none-
theless. The outperformance is considerable when left turns are numerous.

In what follows the letters g, n, q shall denote the green times, number of lanes, and vehicle discharge flows under various
scenarios and at different locations. The superscript ‘‘0’’ will indicate a conventional design without a pre-signal, and no
superscript the tandem design. Subscripts ‘‘L’’ and ‘‘T’’ will indicate the vehicle type, and no subscript the total. Upper and
lower cases for g and n will refer to the intersection and the pre-signal respectively. Note that NL + NT � N is the number
of tandem lanes, which can range from 0 to N; and that n = nL + nT, since there are no shared lanes upstream of the pre-signal.

To simplify the expressions, we shall use the cycle length as the unit for time, and the average number of TVs (or LVs) that
one lane can discharge in one cycle’s worth of green time as the unit of TV (or LV) quantity. In this system of units, the green
phases gL, gT, GL, GT < 1 are also the fractions of green, and the saturation flows per lane of both vehicle types are 1. Figs. 2b–c
use rectangles just as Fig. 2a to denote the maximum number of vehicles that the signal can discharge in its two sub-phases.
These rectangles would have the same lengths in all the figures if the sub-phase durations were the same in the three cases,
but these rectangles span fewer lanes in Figs. 2b and c. This reduced rectangular width illustrates why the partial tandem
system can sustain smaller flows.

Given as parameters are: the total green time available to the approach (G); the fraction of left-turns to be accommodated
(l = qL/q); the original approach geometry, with no shared lanes anywhere ðN0

L ;N
0
T ;N

0 ¼ N0
L þ N0

T ;nL;nT ;n ¼ nL þ nTÞ; and the
modified lane definitions for the tandem design in the sorting area ðN ¼ N0;NL;NT ; with N 6 NL þ NT 6 2NÞ.

For both the conventional and tandem designs, we first solve the ‘‘optimal timing problem’’; i.e., we find the maximum
total flow that the approach can sustain for a given G by optimally choosing the intersection sub-phase durations ðG0

L ;G
0
T ;GL,

and GT), and for the tandem design the pre-signal phase durations (gL and gT) too. In doing so, we shall assume that the lost
time at the pre-signal can be neglected; i.e., that the pre-signal green phases can span the whole cycle: gL + gT 6 1. This seems
reasonable as a first approximation since the conflicts resolved at the pre-signal involve vehicles traveling in the same direc-
tion. Likewise, we shall also assume that G is an ‘‘effective green’’ so we can choose any sub-phases such that G0

L þ G0
T 6 G and

GL + GT 6 G. We shall ignore the impact of this choice on the opposing flows, which is reasonable if these flows are low.
Otherwise, a couple of capacity constraints should be added to the formulation about to be presented. Though these addi-
tions are straightforward, the effect of high opposing flows will not be evaluated in this paper in the interest of brevity.

With the optimum timing problem as a building block, we then solve the ‘‘optimal design problem’’. For this problem, the
lane assignments are no longer treated as parameters, but as decision variables.

3.1. Deterministic analysis

It is assumed in this section that drivers discharge from the traffic signals with deterministic headways. The timing prob-
lem is presented first.

3.1.1. Optimal timing
The maximum flow of the conventional design is given by the following simple linear program, which we denote as ‘‘CLP’’

(conventional linear program). The geometry (i.e., the number of lanes) is given, and the green sub-phase durations are the
decision variables.
4 Rec
ðCLPÞmax
G0

L ;G
0
T

q0

q0
L ¼ q0l; q0

T ¼ q0ð1� lÞ ð1:1Þ
all the VA designs have similar capacities to the pre-timed designs.
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G0
L þ G0

T 6 G ð1:2Þ

q0
L ¼ G0

L N0
L 6 nL ð1:3Þ

q0
T ¼ G0

T N0
T 6 nT ð1:4Þ

G0
L ;G

0
T P 0 ð1:5Þ
Eq. (1.1) ensures that the intersection serves the correct balance of both vehicle classes; (1.2) ensures that only the available
green time is used; and (1.3) and (1.4) that both the signals and the upstream approach lanes can sustain the flows. The
inequalities in (1.3) and (1.4) are redundant if nL P GN0

L and nT P GN0
T . This is almost always the case.

Consideration shows that if nL and nT do not enter the picture then the optimum solution of the CLP is:
q0 ¼ G

l=N0
L þ ð1� lÞ=N0

T

ð2:1Þ

q0
L ¼ q0l ð2:2Þ

q0
T ¼ q0ð1� lÞ ð2:3Þ

G0
L ¼ q0l=N0

L ð2:4Þ

G0
T ¼ q0ð1� lÞ=N0

T ð2:5Þ
Eq. (2.1) gives the capacity and (2.4) and (2.5) the signal sub-phase durations. As expected, (1.2) is binding.
The maximum flow of the tandem design can also be found with a similar LP, which shall be called ‘‘TLP’’. The main two

differences are that now there are four green phase durations to be determined, and that the flows of the two vehicle types
are now constrained both by the signal and the pre-signal. If the storage area is long enough to prevent any transient queues
at the signal from backing up to the pre-signal, their capacities can be evaluated independently. This assumption is made in
the LP below:
ðTLPÞ max
GL ;GT ;gL ;gT

q

qL ¼ ql; qT ¼ qð1� lÞ ð3:1Þ

GL þ GT 6 G ð3:2Þ

gL þ gT 6 1 ð3:3Þ

qL ¼ GLNL ¼ gLnL ð3:4Þ

qT ¼ GT NT ¼ gT nT ð3:5Þ

GL;GT ; gL; gT P 0 ð3:6Þ
New in this program are constraint (3.3) and the last members of constraints (3.4) and (3.5). Although the TLP appears to be
more constrained due to these additions, this is not necessarily so because the tandem design always has more lanes for at
least one vehicle type; i.e., NL P N0

L ;NT P N0
T , and NL þ NT > N0

L þ N0
T .

As before, the reader can verify that the solution of the TLP is:
q ¼min
G

l=NL þ ð1� lÞ=NT
;

1
l=nL þ ð1� lÞ=nT

� �
ð4:1Þ

qL ¼ ql ð4:2Þ

qT ¼ qð1� lÞ ð4:3Þ

GL ¼ ql=NL ð4:4Þ

GT ¼ qð1� lÞ=NT ð4:5Þ

gL ¼ ql=nL ð4:6Þ
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gT ¼ qð1� lÞ=nT ð4:7Þ
The second term of (4.1) is the maximum flow that can pass through the pre-signal, and the first term the maximum flow

through the signal. For an intersection without turn pockets N0
L ¼ nL and N0

T ¼ nT

� �
, the second term is greater than (2.1) by

a factor of 1/G. Furthermore, since NL P N0
L ;NT P N0

T , and NL þ NT > N0
L þ N0

T , the first term of (4.1) is also greater than (2.1);
perhaps considerably so. Thus, for any intersection without turn pockets the tandem system improves capacity.

The improvements for typical cases can be quite large. For example, assume that: G ¼ 1=2; l ¼ 1=3; N0
L ¼ 1; N0

T ¼ 2; and
nL = 1, nT = 2, NL = NT = 3 as in Fig. 2a. Then, for the conventional design, (2.1), (2.2), (2.3) yield: q0

L ¼ 1=4; q0
T ¼ 1=2; and

q0 = 3/4; and for the tandem design (4.1), (4.2), (4.3) yield: qL = 1/2; qT = 1; and q = 3/2. Thus, capacity is increased by
100%. The same calculations for the partial design of Fig. 2b and c show capacity increases of 71% and 33% respectively. These
results are typical. Although it is possible to construct examples with turn pockets where the tandem design would reduce
capacity, these examples always involve unreasonably large values of G and/or small values of n/N.

3.1.2. Optimal design
The above assumes that the lane assignments are given and only the durations of the pre-signal phases and signal sub-

phases can be adjusted. In reality lane assignments can be changed in response to changing demand. It is therefore of some
interest to know the capacity that can be achieved when both the green-phase durations and the lane designations
(nL;nT ;NL;NT ;N

0
L , and N0

T ) are optimally set. This can be done both for the conventional and tandem configurations by adding
the following constraints to the CLP and TLP:
nL þ nT ¼ n for CLP and TLP ð5:1Þ

N0
L þ N0

T ¼ N for CLP ð5:2Þ

NL;NT 6 N for TLP ð5:3Þ

NL þ NT � N ¼ NLT for TLP with NLT tandem lanes ð5:4Þ
With the new variables, some of the constraints in the CLP and the TLP become non-linear. Furthermore, since the new vari-
ables are natural numbers, the resulting problems are mixed-integer non-linear programs. In practical cases the number of
feasible lane designations arising from (5) is small. Therefore, these non-linear programs can be easily solved by evaluating
(2.1) or (4.1) for all feasible lane designations and choosing those that maximize the result.

To identify the proper application domain for the tandem method, a battery of these generalized CLP and TLP problems
were solved. Four basic approach configurations were examined: approaches with 2 and 3 lanes, with and without 1-lane
turn pockets. Their capacities were evaluated for all possible values of the input parameters (G and l), both under conven-
tional and tandem control. For the sake of brevity, the latter was only analyzed for the case in which only one tandem lane is
used; i.e., where its potential benefit is least. Fig. 3 shows the result. Contour lines show the ratio of the partial tandem
capacity over the maximal possible flow (GN). Shading shows the ratio of the partial tandem capacity over the conventional
capacity, with lighter shades denoting greater benefits reaped by the tandem design. These figures can also be used to deter-
mine if a given pair of flows can be served with a given G. To do so, go to the appropriate figure and determine from the point
with the relevant G and l whether the given total flow is larger or smaller than the capacity displayed for the point’s contour.

Note that when G is very large (approaching 1) the tandem system performs worse than the conventional. This happens
because the pre-signal then becomes the binding constraint. But for common settings with G around 0.5, the capacity in-
crease is about 20–30%. This is encouraging because the benefit is obtained with only one tandem lane. On the other hand,
the results in this sub-section are optimistic because they assume that vehicles discharge from the intersection at a deter-
ministic rate. The next sub-section obtains more realistic results by relaxing this assumption.

3.2. Stochastic considerations

The concepts discussed below are easier to understand if the cycle time (C) and the average discharge headway (H) are explic-
itly used as variables. Therefore, the special system of units we have been using, where these two variables took the value ‘‘1’’,
will not be used. Instead the results will be derived for an arbitrary system and then converted to the special system at the end.

Refer to Fig. 2a (full tandem) and consider what would happen if the LVs in one of the sorting area’s lanes were unable to
fully discharge in their signal sub-phase (call this a lane failure) due to the randomness in discharge headways. Assume now
that vehicles do not change lanes once sorted and consider what happens. The residual LVs in the failed lane would have to
stop and wait for the next sub-phase. No TVs in that lane would discharge in their sub-phase. Instead, these TVs would have
to wait until the residual LVs have cleared the intersection.5 Note that the next cycle will discharge these queues and nobody
else. Thus a full cycle would have been wasted for both vehicle types.
eality, some of these TVs may change lanes to take advantage of unused capacity in neighboring lanes. Thus, our assumption of no lane changing is
ative.



Fig. 3. Comparison of the deterministic version of capacities of conventional and tandem design. Contour lines show the ratio of the tandem capacity over
the maximal possible flow; shading shows the ratio of the tandem capacity over the conventional capacity: (a) 2 lanes with no turn pocket (n = N = 2), 1
tandem lane; (b) 2 lanes with 1-lane turn pocket (n = 2, N = 3), 1 tandem lane; (c) 3 lanes with no turn pocket (n = N = 3), 1 tandem lane; (d) 3 lanes with 1-
lane turn pocket (n = 3, N = 4), 1 tandem lane.
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It should be clear that if the TV sub-phase fails on one lane, then a cycle is still lost for the same reasons; and that if a lane
fails back to back for both the LV and TV sub-phases, then 2 cycles are lost. Thus, a sub-phase lane failure of either type,
regardless of when it happens relative to other failures, wastes exactly one cycle for that lane.

To manage lane failures, we will hold constant the signal sub-phase durations but will reduce the size of the
vehicle batches that the pre-signal allows to pass in every cycle. The pre-signal is assumed to be adaptive, normally
releasing batches of fixed size, but when a lane has failed the batch size is reduced just enough to ensure that the
other lanes receive their full allocation of vehicles. Lane failures can be identified with detector(s) located at the signal
stop lines in the tandem lane(s). If during either sub-phase there is any stopped vehicle over the detector(s), the lane
fails.

In light of the above, we see that a lane failure does not affect other lanes. Therefore, the long-term discharge rate of any
lane can be analyzed independently of the other lanes. In the analysis that follows we will focus on a single lane and evaluate
the probability of the lane’s failure for the given batch size. Then we shall derive the expected LT and TV flow per cycle for the
given batch sizes.

To do this, let m.s be the size of the released batch in one of the lanes of the sorting area, where ‘‘.’’ denotes L or T. The
expected number of vehicles that this lane can discharge in a sub-phase is m. = G./H. If the coefficient of variation of the sat-
uration headways is c, then the probability of failure p. is:



Fig. 4. Stochastic capacities of conventional and tandem design with C/H = 48. Contour lines show the ratio of the tandem capacity over the maximal
possible flow; shading shows the ratio of the tandem capacity over the conventional capacity: (a) 2 lanes with no turn pocket (n = N = 2), 1 tandem lane; (b)
2 lanes with 1-lane turn pocket (n = 2, N = 3), 1 tandem lane; (c) 3 lanes with no turn pocket (n = N = 3), 1 tandem lane; (d) 3 lanes with 1-lane turn pocket
(n = 3, N = 4), 1 tandem lane.
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p: ¼ Pr
Xm:s
i¼1

Hi > m:H

 !
¼ U �ðm:�m:sÞ

ffiffiffiffiffiffiffiffi
m:s
p

c
� �.� �
where U(�) is the standard normal c.d.f.6 This can be written as:
p: ¼ Uð�k:Þ; where k: ¼ ðm:�m:sÞ
ffiffiffiffiffiffiffiffi
m:s
p

c
� �

and m: ¼ G:=H ð6Þ
The fixed number of vehicles released by the pre-signal in one of its regular cycles (i.e., a cycle without a lane failure) is:
NLms

L þ NT ms
T . For any lane, the average number of cycles required to serve its share of these vehicles is (1 + pT + pL), because

every lane failure implies an unused cycle. Thus, the average flow through the signal is: NLms
L þ NT ms

T

� �
/½Cð1þ pT þ pLÞ�. This

can be rewritten in terms of k. using (6):
qs ¼
NLGL=H 1� kLc=

ffiffiffiffiffiffiffiffiffiffiffi
GL=H

p� �
þ NT GT=H 1� kTc=

ffiffiffiffiffiffiffiffiffiffiffiffi
GT=H

p� �
Cð1þUð�kLÞ þUð�kTÞÞ

ð7:1Þ
assume the saturation headways of different drivers are independently distributed. According to the central limit theorem,
Pm:s

i¼1Hi is approximately
, since m.s is usually large enough.
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To express this equation in the special unit system that was used in Section 3.1 without C or H, replace c (which is the coef-
ficient of variation of the time it takes to discharge one unit of vehicle quantity) by its counterpart c’ in the special unit sys-
tem. This counterpart is c0 ¼ c=

ffiffiffiffiffiffiffiffiffi
C=H

p
because in the special unit system a unit of vehicle quantity consists of C/H

independent vehicles. Thus the equation becomes:
7 The
sufficien
second

8 The
(2009) m
on our
qs ¼
NLGL 1� kLc0=

ffiffiffiffiffi
GL
p� �

þ NT GT 1� kTc0=
ffiffiffiffiffiffi
GT
p� �

1þUð�kLÞ þUð�kTÞ
ð7:2Þ
To find the optimum system configuration and signal settings, replace the objective function of TLP with (7.2) and solve
the resulting problem. This stochastic version of the design problem will be called STLP. It provides a more realistic assess-
ment of the system than the TLP.7

Note the k. variables only appear in the objective function of the STLP. Thus, to solve it, we first maximize (7.1), (7.2) with
respect to these variables and then solve for the remaining decision variables. Although the first step is analytically challenging,
we find numerically from (7.1) that qs is a very smooth function of kL and kT around the optimum. For example, given H = 2.5 s,
G/C = 0.5, and c = 0.25, with C ranging from 30 s to 180 s, and l ranging from 0.1 to 0.9, we find that the value of qs for kL = kT = 2
always exceeds 99% of the true optimum.8 Therefore, we fix these variables at kL = kT = 2 and then solve the STLP for the remaining
variables as in Section 3.1. This is done by evaluating all feasible combinations of NL and NT as in Section 3.1.2. The resulting solu-
tion should be a conservative approximation of what might be expected in reality. Fig. 4 shows these solutions for the same battery
of problems as in Fig. 3, using C/H = 48. Note that improvements are still achieved, albeit of a smaller magnitude.

4. Discussion

We close by discussing the benefits of the proposed tandem concept and application issues.

4.1. Potential benefits

Note from Figs. 3 and 4 that low green ratios are problematic under stochastic considerations, even though they were fine
in the deterministic cases. This happens because the rate that is produced by the signal in each lane is the product of (C/
H) = 48 vehicles per lane per cycle and the green ratio; i.e., less than 10 vehicles per lane per cycle if the green ratio is less
than 0.2. Such low vehicle numbers magnify the detrimental impact of stochastic fluctuations. However, for more usual
green ratios (0.4 < G < 0.5), the tandem system with 1 tandem lane increases capacity in all four lane configurations dis-
played in Fig. 4. The benefit is greater if the intersection is narrow and has no turn pockets. In these cases capacity increases
by more than 15% when G is between 0.3 and 0.7, and l is below 0.2. The improvement can exceed 30% for certain combi-
nations of G and l.

Greater benefits are achieved if one allows for more tandem lanes. This is shown in Fig. 5, which evaluates the same inter-
section configurations as before, but with 2 or 3 tandem lanes. As the figure shows, improvements on the order of 50% can be
obtained when G � 0.5 and the turning ratios are significant.

The reader may complain that the conventional case is unduly penalized in these comparisons because LVs and TVs are
not allowed to share lanes in the conventional design—and that a significant penalty would exaggerate the benefits of the
tandem configuration. But this penalty turns out to be either non-existent or insignificant. Calculations show that a shared
lane actually reduces the capacity of the conventional design unless the turning ratio is quite small—and in this case the tan-
dem configuration would not be of much benefit anyway; see Table 1. This table shows critical turning ratios, which if ex-
ceeded negate the benefit of a shared lane in the conventional configuration. The reason for the ineffectiveness of shared
lanes with a conventional design is that during the LV sub-phase, any TV in a shared lane would block the lane from dis-
charging, and vice versa. The tandem strategy in essence removes the blocking; it even removes the limitation to use only
one shared lane. This is why the capacity increases in Fig. 5 are so large.

4.2. Application issues

The tandem concept is not intended for intersections that are always undersaturated, because in this case extra capacity
is not needed, and the concept would actually delay some vehicles a little. It should only be applied to reduce or eliminate
oversaturation. Ideally, the tandem system would only be activated during the oversaturated times of day, when it can pro-
duce a benefit.

To further visualize how effective the concept can be, visit the following url: ‘‘http://www.its.berkeley.edu/volvocenter/
pre-signal/Tandem_Design.html’’. This web page displays an animated simulation in CORSIM (FHWA, 2007) of a real 3-lane
STLP does not include extra constraints in connection with the reduced batch sizes, m.s, because the deterministic pre-signal green times are always
t to accommodate them. To find m.s, first obtain m. by inserting the optimal G. in the last equality of (6), and then insert m. and the optimum k. in the

equality of (6).
c value (coefficient of variation of the saturation headway) of 0.25 is consistent with our field measurement which is 0.24, and the literature: Jin et al.
easured a c value of 0.3, and Li and Prevedouros (2002) measured a value of 0.22. We find that changing the c value modestly has no appreciable effect

predicted outcomes.

http://www.its.berkeley.edu/volvocenter/pre-signal/Tandem_Design.html
http://www.its.berkeley.edu/volvocenter/pre-signal/Tandem_Design.html


Fig. 5. Stochastic capacities of the conventional and tandem designs with C/H = 48. Contour lines show the ratio of the tandem capacity over the maximal
possible flow; shading shows the ratio of the tandem capacity over the conventional capacity: (a) 2 lanes with no turn pocket (n = N = 2), 2 tandem lanes; (b)
2 lanes with 1-lane turn pocket (n = 2, N = 3), 2 tandem lanes; (c) 3 lanes with no turn pocket (n = N = 3), 2 tandem lanes; (d) 3 lanes with 1-lane turn pocket
(n = 3, N = 4), 2 tandem lanes; (e) 3 lanes with no turn pocket (n = N = 3), 3 tandem lanes; (f) 3 lanes with 1-lane turn pocket (n = 3, N = 4), 3 tandem lanes.
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Table 1
Critical left-turning ratios on approaches without turn pockets for a shared lane to be beneficial.

Critical left-turning ratio n = N = 2 n = N = 3

C = 60 s (%) C = 90 s (%) C = 120 s (%) C = 60 s (%) C = 90 s (%) C = 120 s (%)

G/C = 0.4 14 8 6 7 4 3
G/C = 0.5 11 6 5 5 3 2
G/C = 0.6 8 5 4 4 3 2
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approach in Chengdu, China, which was studied in Xuan et al. (2010). The approach is currently oversaturated, and this con-
dition cannot be removed by conventional means. The simulation shows side by side how the approach performs under both,
the current design and a proposed pre-signal design. While queues grow with the current design, the pre-signal system pre-
vents this growth and serves more vehicles.

Of course, the concept can be used on multiple approaches to an intersection, including on approaches where opposing
movements receive green time simultaneously. Though the concept is suitable only for cases when separate phases are given
to LVs and TVs on an approach, it can be used when the signal also displays an overlapping phase to simultaneously serve the
LVs and TVs on the approach with higher left-turn demand.

The tandem concept requires extra space to hold the transient queues of the vehicles released into the sorting area.
Appendix A derives expressions for the lengths of both, the sorting area and the street section upstream of the pre-signal
that are required to hold its queues without spill-backs. Notice that this total distance is roughly proportional to cycle
length—it turns out to be about 100 m per minute of cycle length. Since this combined distance cannot exceed the approach
leg length, short cycles may be needed if city blocks are short. Fortunately, by increasing capacity, pre-signals allow cycles to
be shortened. Short cycles can also benefit other users of the intersection, like bicyclists and pedestrians. And even if the
distance requirements cannot be met, the concept may still work if suitably modified, though the capacity gains would
be lower.

Performance of the tandem concept could be hampered by a lack of driver compliance. For example, an ill-intentioned
driver might jump part of the queue in the sorting area by using a pre-signal phase that does not correspond to his desired
movement, and then block other drivers while he waits for the right-of-way into the intersection. A video-based enforce-
ment system that records the license plates of offending vehicles and automatically issues citations might minimize the
occurrence of this undesirable game-playing.

At this point, the tandem concept is new, and thus we do not know how people will react to it. Field tests are being
planned to see how it would work in reality.
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Appendix A. Spatial considerations

This appendix determines the physical length requirements for the sorting area and the block so that queues do not back
up to the pre-signal and to the upstream intersection. We explore a worst case scenario where the tandem design is working
at capacity.

First, we derive a formula for the length, D1, of the sorting area. During each cycle, tandem lanes serve more vehicles than
other lanes. Thus the sorting area needs to be just long enough to hold at jam density, Kj, all the vehicles that discharge from
a tandem lane each cycle; see time–space diagram in Fig. 6. Clearly then, the minimal length of the sorting area is:
D1 ¼ ms
L þms

T

� �
=Kj ð8Þ
Next, we express the distances, D2L and D2T, required to hold the queues of the LVs and TVs directly upstream of the pre-
signal, assuming that demand equals capacity. These distances should be just long enough to hold at jam density all the
vehicles that discharge in each of the pre-signal phases; see Fig. 6. Clearly then:
D2L ¼
C
H

gs
L

Kj
ð9:1Þ

D2T ¼
C
H

gs
T

Kj
ð9:2Þ
The distance that needs to be provided upstream of the pre-signal is therefore:
D2 ¼maxfD2L;D2Tg ð9:3Þ



Fig. 6. Spatial evolution during the operation of the tandem design with n = NL = NT = N = 2 and saturated demand: (a) fundamental diagram; (b) time–space
diagram of the LVs (with that for TVs in gray color); (c) time–space diagram of the TVs (with that for LVs in gray color).
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