
 1  2  3  4 Increasing the Capacity of Signalized Intersections 5 with Separate Left Turn Phases 6 
 7 
 8 
 9 
 10 

Yiguang Xuan * 11 
University of California, Berkeley 12 

416F McLaughlin Hall #1720 13 
University of California, Berkeley 14 

Berkeley, CA, 94720-1720 15 
510-642-9907 16 

xuanyg@berkeley.edu 17 
 18 

Carlos F. Daganzo 19 
University of California, Berkeley 20 

416A McLaughlin Hall #1720 21 
University of California, Berkeley 22 

Berkeley, CA, 94720-1720 23 
510-642-3853 24 

510-642-1246 (fax) 25 
daganzo@ce.berkeley.edu 26 

 27 
Michael J. Cassidy 28 

University of California, Berkeley 29 
416C McLaughlin Hall #1720 30 

University of California, Berkeley 31 
Berkeley, CA, 94720-1720 32 

510-642-7702 33 
510- 642-1246 (fax) 34 

cassidy@ce.berkeley.edu 35 
 36 

* Corresponding Author 37 
 38 
 39 
 40 

July 31, 2010 41 
 42 

Word count: 7,266 (5,766 + 1,500 figures and tables) 43 
  44 

TRB 2011 Annual Meeting Original paper submittal - not revised by author.



Xuan, Daganzo, Cassidy  2 

 
 

ABSTRACT 1 
Separate turn phases are often used on the approach legs to intersections with heavy left turns. This 2 
wastes capacity on the approach because some of its lanes cannot discharge during its green phases. The 3 
paper shows that the problem can be eliminated by reorganizing traffic on all the lanes upstream of an 4 
intersection using a mid-block pre-signal. If drivers behave deterministically, the capacity that can be 5 
achieved is the same as if there were no left turns. However, the reorganization is so drastic that it may be 6 
counterintuitive to drivers. This can be remedied by reorganizing traffic on fewer lanes. It is shown that 7 
such partial reorganization still increases capacity significantly, even if drivers behave randomly and only 8 
one lane is reorganized. The paper shows how to optimize the design of a pre-signal system for a generic 9 
intersection. It also identifies both, the potential benefits of the proposed system for a broad class of 10 
intersections, and the domain of application where the benefits are most significant.  11 
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1. INTRODUCTION 1 
Left turns are a significant hindrance to the smooth flow of traffic in networks involving at-grade 2 
intersections. If left turns are significant in number, separate left turn phases have to be introduced at 3 
signalized intersections to handle the flow; see (1). The problem with left turns is also indirectly 4 
addressed by generic optimization methods devised to determine the duration of signal phases (2, 3), 5 
which were later generalized to include the grouping of streams into phases (4, 5, 6), and more recently 6 
the lane markings (7).  7 

Unfortunately, despite these optimizations, separate left turn phases reduce the fraction of time 8 
that the signal can devote to through movements, thereby reducing capacity. This reduction can increase 9 
delay if through traffic is heavy. At the network level, the reduction can mean the difference between 10 
smooth flow and gridlock. 11 

These problems are often avoided in practice by banning and re-routing the offending left-turns. 12 
This can be done in different ways; e.g., with median U-turns, jughandles, superstreets, paired 13 
intersections, quadrant roadways, and bowties (8, 9). These strategies are good because they eliminate 14 
both, the left turns and the need for left turn phases, thereby increasing the intersection capacity. But the 15 
strategies also force left-turning vehicles to go through the intersection multiple times, increasing demand. 16 
This offsets some of the benefit. In addition most re-routing designs except for the paired intersection 17 
involve construction and require substantial space, which may not be available.  18 

In view of this, the paper proposes a way of increasing capacity without banning left turns or 19 
modifying the intersection in a way that requires major construction. The focus of the analysis is a generic 20 
approach leg to a 4-way intersection controlled by a pre-timed traffic signal. The approach receives two 21 
green sub-phases: one for protected left turns only, and the other exclusively for through movements and 22 
right turns.  23 

Currently, intersections of this type do not operate efficiently because during the protected left-24 
turn phase, only the lanes devoted to left turns discharge. Conversely, during the through phase only the 25 
through (and right turn) lanes discharge. This is inefficient because many lanes go unused during the 26 
green phases. The problem is compounded when lanes are shared by through and left-turn vehicles, which 27 
cannot fully discharge during either sub-phase due to blocking. Imagine how much more capacity could 28 
be gained if all lanes could be made to fully discharge during both sub-phases. The paper will show how 29 
this objective can be realized by dynamically re-organizing traffic upstream of the intersection with a pre-30 
signal.  31 

The idea of pre-signals is not new. They have been used in Europe to give buses priority for a 32 
long time (10). Pre-signal systems for both, buses and bicycles have been studied (11, 12), respectively. 33 
Pre-signals have also been used in connection with left turns; see FIGURE 1, which illustrates the 34 
“continuous flow intersection (CFI)” concept (13, 14). This concept resolves the left-turn vs. opposing-35 
through conflict at the pre-signals, as shown in the figure. Since the left-turn vehicles and opposing-36 
through vehicles are reorganized to avoid conflicts at the intersection, they can be served in a single green 37 
phase, and this increases capacity. Interesting as it is, the CFI concept still has some drawbacks, however: 38 
(a) it requires permanent changes in layout, which cannot be turned on and off as needed; (b) it wastes 39 
lane resources unless the demands for left and through vehicles happen to be in the same balance as the 40 
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lanes are marked; (c) it cannot be surgically deployed on a single approach of a 4-way intersection—at 1 
least 2 approaches need to be involved; and (d) it precludes bus stops from being located on the far side of 2 
the intersection.  3 

The proposed design is similar in spirit but overcomes these problems. Since it can be deployed 4 
on a single approach leg, the single approach will be the object of analysis. Section 2 describes the 5 
concept; section 3 the optimum signal settings and capacity formulae; and section 4 discusses the results, 6 
including the spatial requirements of the system. 7 

 8 

FIGURE 1  Continuous flow intersection. Arrows show the movements allowed during the intersection’s green phase for 9 
the horizontal directions. 10 

2. THE CONCEPT 11 
The basic idea is depicted in FIGURE 2a. Flow is left to right. Note the pre-signal and its (dark vertical) 12 
stop line. Upstream of the pre-signal lanes are marked by movement. These markings segregate left-13 
turning vehicles (LVs) and through/right-turning vehicles (TVs) onto separate sets of lanes. (The figure 14 
does not show right turns for simplicity of exposition; but the system performs just the same if they are 15 
included.)  16 

The pre-signal runs on the same cycle as the intersection signal and alternates giving green time 17 
to the two sets of lanes. Downstream of the pre-signal, variable message signs (VMSs) instruct drivers of 18 
both vehicle types to use all the lanes. It may be desirable to change these instructions with traffic 19 
conditions. Therefore, VMSs are preferred to lane markings because the former can be changed with time. 20 
The area between the pre-signal and the signal will be called the “sorting area”. This area is intended to 21 
contain those transient queues created by the different offsets and phases of the signal and the pre-signal. 22 
The sorting area should be long enough to ensure that these queues do not spill back to the pre-signal. 23 

Here is how the system operates for one cycle if at the intersection the LV-sub-phase leads the 24 
TV-sub-phase. The pre-signal starts its cycle by giving the green to the LVs while the intersection signal 25 
is red. These LVs advance into the sorting area using all the lanes and wait at the intersection stop line. 26 
The pre-signal then turns green for the TVs, which line up behind the LVs, again using all lanes. With this 27 
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arrangement, vehicles are efficiently positioned to discharge using all the lanes when the intersection 1 
green phases start: first the LV-sub-phase, then the TV-sub-phase. Of course, if the LV-sub-phase lags the 2 
TV-sub-phase then the order is reversed and the pre-signal starts its cycle with the TVs. 3 

The duration of the pre-signal phases (for LVs and TVs) should be chosen so that the number of 4 
vehicles of either type discharged by the pre-signal at saturation is close to, but does not exceed, the 5 
maximum number that all the intersection lanes can jointly discharge during the corresponding 6 
intersection sub-phase. In this way queues of either vehicle type clear at the signal in every sub-phase so 7 
that blocking is avoided when sub-phases change. The pre-signal phases should also ensure that if there is 8 
sufficient demand, then the discharged numbers should be close to the maximum. In this way both signal 9 
sub-phases will be nearly saturated. This idea is illustrated in Figure 2a by the two rectangular blocks in 10 
the sorting area. These blocks represent the space needed for the maximum number of vehicles that the 11 
signal can discharge in its two sub-phases. The sub-phase durations shall be denoted GL and GT, where the 12 
single-letter subscript refers to either LTs or TVs.  Lengthwise, these blocks span the maximum number 13 
of vehicles that can discharge from a single lane in a sub-phase. Therefore, their lengths are proportional 14 
to GL and GT, as shown.   15 

 16 
(a) 17 

 18 
(b) 19 

 20 
(c) 21 

FIGURE 2  The tandem intersection concept: (a) full tandem; (b) partial tandem; (c) general case. Rectangles indicate the 22 
size of the LV and TV queues in each lane, and their order; they do not indicate the actual location of these queues. 23 

An advantage of the proposed pre-signal method when compared with approaches that require 24 
fixed infrastructure and/or markings is that the phases and sub-phases of the two signals can be changed 25 
with the time-of-day to be in balance with the percentage of turns. This produces (nearly) the same 26 
capacity as if left turns had been banned. A disadvantage is that drivers are sometimes asked to be in a 27 
counterintuitive lane; e.g., note from Figure 2a that some LVs occupy the intersection’s right lane.  28 
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To alleviate this drawback, the full-tandem concept of FIGURE 2a can be moderated with 1 
“partial-tandem” designs in which only some of the lanes in the sorting area are shared by both types of 2 
vehicles; see FIGURE 2b, where only two lanes are shared. To avoid confusion with other types of shared 3 
lanes, these lanes will be called “tandem lanes” from now on. The disadvantage of the partial-tandem 4 
concept is that it does not engage all the lanes fully in each sub-phase. To balance user-friendliness with 5 
capacity needs, one should define for any application the smallest possible set of tandem lanes that will 6 
meet demand. 7 

Since the number of tandem lanes can be adjusted as a decision variable, the full-tandem case can be 8 
understood as a special case of partial tandem. Therefore, we will from now on focus on the latter, often 9 
dropping the word “partial”. The most general case (illustrated in FIGURE 2c) does not even require that 10 
the number of lanes at the signal and the pre-signal be equal. 11 

3. CAPACITY ANALYSIS 12 
The capacity of tandem and conventional intersection designs are compared here. Capacity formulae and 13 
capacity-maximizing timing plans are developed, first for an idealized best case scenario in which 14 
vehicles behave deterministically, and then for a more realistic scenario that captures stochastic 15 
phenomena. Although the corrections introduced for the latter reduce the ideal capacity, results show that 16 
the tandem design typically outperforms the conventional design nonetheless. The outperformance is 17 
considerable when left turns are numerous. 18 

In what follows the letters g, n, q shall denote the green times, number of lanes, and vehicle 19 
discharge flows under various scenarios and at different locations. The superscript “0” will indicate a 20 
conventional design without a pre-signal, and no superscript the tandem design. Subscripts “L” and “T” 21 
will indicate the vehicle type, and no subscript the total. Upper and lower cases for g and n will refer to 22 
the intersection and the pre-signal respectively. Note that NL + NT – N is the number of tandem lanes, 23 
which can range from 0 to N; and that n = nL + nT, since there are no shared lanes upstream of the pre-24 
signal.  25 

To simplify the expressions, we shall use the cycle length as the unit for time, and the average 26 
number of TVs (or LVs) that one lane can discharge in one cycle’s worth of green time as the unit of TV 27 
(or LV) quantity. In this system of units the green phases gL, gT, GL, GT < 1 are also the fractions of green, 28 
and the saturation flows of both vehicle types are 1. As in Figure 2a, Figures 2b and 2c use rectangles to 29 
denote the maximum number of vehicles that the signal can discharge in its two sub-phases. These 30 
rectangles would have the same lengths in all the figures if the sub-phase durations were the same in the 31 
three cases, but these rectangles span fewer lanes in Figures 2b and 2c. This reduced rectangular width 32 
illustrates why the partial tandem system can sustain smaller flows. 33 

Given as parameters are: the total green time available to the approach (G); the fraction of left-34 
turns to be accommodated (l = qL / q); the original approach geometry, with no shared lanes anywhere 35 
(NL

0, NT
0, N0 = NL

0 + NT
0, nL, nT, n = nL + nT); and the modified lane definitions for the tandem design in 36 

the sorting area (N = N0, NL, NT, with N ≤ NL + NT ≤ 2N). 37 

For both the conventional and tandem designs, we first solve the “optimal timing problem”; i.e., 38 
we find the maximum total flow that the approach can sustain for a given G by optimally choosing the 39 

TRB 2011 Annual Meeting Original paper submittal - not revised by author.



Xuan, Daganzo, Cassidy  7 

 
 

intersection sub-phase durations (GL
0, GT

0, GL, and GT), and for the tandem design the pre-signal phase 1 
durations (gL and gT) too. In doing so, we shall assume that the lost time at the pre-signal can be neglected; 2 
i.e., that the pre-signal green phases can span the whole cycle: gL + gT ≤ 1. This seems reasonable as a 3 
first approximation since the conflicts resolved at the pre-signal involve vehicles traveling in the same 4 
direction. Likewise, we shall also assume that G is an “effective green” so we can choose any sub-phases 5 
such that GL

0+GT
0 ≤ G and GL+GT ≤ G. We shall ignore the impact of this choice on the opposing flows, 6 

which is reasonable if these flows are low. Otherwise, a couple of capacity constraints should be added to 7 
the formulation about to be presented. The effect of high opposing flows will not be evaluated in this 8 
paper for brevity.  9 

With the optimum timing problem as a building block, we then solve the “optimal design problem”. 10 
For this problem, the lane assignments are no longer be treated as parameters, but as decision variables. 11 

3.1. Deterministic Analysis 12 
It is assumed in this section that drivers discharge from the traffic signals with deterministic headways. 13 
The timing problem is presented first. 14 

3.1.1 Optimal Timing 15 
The maximum flow of the conventional design is given by the following simple linear program with the 16 
green sub-phase durations as decision variables, which shall be called “CLP” (conventional linear 17 
program):  18 

 (CLP) 0max q  19 

 0 0
Lq q l= ; 0 0 (1 )Tq q l= −  (1.1) 20 

 0 0
L TG G G+ ≤  (1.2) 21 

 0 0 0
L L L Lq G N n= ≤  (1.3) 22 

 0 0 0
T T T Tq G N n= ≤  (1.4) 23 

 0 0, 0L TG G ≥ . (1.5) 24 

Equation (1.1) ensures that the intersection serves the correct balance of both vehicle classes; (1.2) 25 
ensures that only the available green time is used; and (1.3) and (1.4) that both the signals and the 26 
upstream approach lanes can sustain the flows. The inequalities in (1.3) and (1.4) are redundant if nL ≥ 27 
GNL

0 and nT ≥ GNT
0. This is almost always the case.  28 

Consideration shows that if nL and nT do not enter the picture then the optimum solution of the 29 
CLP is: 30 

 0
0 0/ (1 ) /L T

Gq
l N l N

=
+ −

 (2.1) 31 

 0 0
Lq q l=  (2.2) 32 

 0 0 (1 )Tq q l= −  (2.3) 33 

 0 0 0/L LG q l N=  (2.4) 34 
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 0 0 0(1 ) /T TG q l N= − . (2.5) 1 

Equation (2.1) gives the capacity and (2.4) - (2.5) the signal sub-phase durations. As expected, 2 
(1.2) is binding. 3 

The maximum flow of the tandem design can also be found with a similar LP, which shall be 4 
called “TLP”. The main two differences are that now there are four green phase durations to be 5 
determined, and that the flows of the two vehicle types are now constrained both by the signal and the 6 
pre-signal. If the storage area is long enough to prevent any transient queues at the signal from backing up 7 
to the pre-signal their capacities can be evaluated independently. This assumption is made in the LP 8 
below: 9 
 (TLP) max q   10 

 Lq ql= ; (1 )Tq q l= −  (3.1) 11 

 L TG G G+ ≤  (3.2) 12 

 1L Tg g+ ≤  (3.3) 13 

 L L L L Lq G N g n= =  (3.4) 14 

 T T T T Tq G N g n= =  (3.5) 15 

 , , , 0L T L TG G g g ≥ . (3.6) 16 

New in this program are constraint (3.3) and the last member of constraints (3.4) and (3.5). 17 
Although the TLP appears to be more constrained due to these additions, this is not so because the tandem 18 
design allows us to allocate more lanes to at least one vehicle type; i.e., NL ≥ NL

0, NT ≥ NT
0, and NL+NT > 19 

NL
0+NT

0. 20 

As before, the reader can verify that the solution of the TLP is: 21 

 
1min ,

/ (1 ) / / (1 ) /L T L T

Gq
l N l N l n l n

⎧ ⎫
= ⎨ ⎬+ − + −⎩ ⎭

 (4.1) 22 

 Lq ql=  (4.2) 23 

 (1 )Tq q l= −  (4.3) 24 

 /L LG ql N=  (4.4) 25 

 (1 ) /T TG q l N= −  (4.5) 26 

 /L Lg ql n=  (4.6) 27 

 (1 ) /T Tg q l n= − . (4.7) 28 

The second term of (4.1) is the maximum flow that can pass through the pre-signal, and the first 29 
term the maximum flow through the signal. For an intersection without turn pockets (NL

0 = nL and NT
0 = 30 

nT), the second term is greater than (2.1) by a factor of 1/G. Furthermore, since NL ≥ NL
0, NT ≥ NT

0, and 31 
NL+NT > NL

0+NT
0, the first term of (4.1) is also greater than (2.1); perhaps considerably so. Thus, for any 32 

intersection without turn pockets the tandem system improves capacity.  33 
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The improvements for typical cases can be quite large. For example, assume that: G = ½; l = 1/3; 1 
NL

0 = 1; NT
0 = 2; and nL = 1, nT = 2, NL = NT = 3 as in FIGURE 2a. Then, for the conventional design, (2.1) 2 

- (2.3) yield: qL
0 = 1/4; qT

0 = 1/2; and q0 = 3/4; and for the tandem design (4.1) - (4.3) yield: qL = 1/2; qT = 3 
1; and q = 3/2. Thus, capacity is increased by 100%. The same calculations for the partial design of 4 
FIGURE 2b or FIGURE 2c show a capacity increase of 33%. These results are typical. It is however 5 
possible to construct examples with turn pockets where the tandem design would reduce capacity. But 6 
these examples always involve unreasonably large values of G and/or small values of n / N.  7 

3.1.2 Optimal Design 8 
The above assumes that the lane assignments are given and only the durations of the pre-signal phases 9 
and signal sub-phases can be adjusted. In reality lane assignments could be changed in response to the 10 
demand. It is therefore of some interest to know the capacity that can be achieved when both the green-11 
phase durations and the lane designations (nL, nT, NL, NT, NL

0, and NT
0) are optimally set. This can be done 12 

both for the conventional and tandem configurations by adding the following constraints to the CLP and 13 
TLP: 14 
 L Tn n n+ =  for CLP and TLP (5.1) 15 

 0 0
L TN N N+ =  for CLP (5.2) 16 

 ,L TN N N≤  for TLP (5.3) 17 

 L TN N N k+ − =  for TLP with k tandem lanes. (5.4) 18 

With the new variables, some of the constraints in the CLP and the TLP become non-linear. 19 
Furthermore, since the new variables are natural numbers, the resulting problems are mixed-integer non-20 
linear programs. In practical cases the number of feasible lane designations arising from (5) is small. 21 
Therefore, these non-linear programs can be easily solved by evaluating (2.1) or (4.1) for all feasible lane 22 
designations and choosing those that maximize the result.  23 

To identify the proper application domain for the tandem method, a battery of these generalized 24 
CLP and TLP problems were solved. Four basic approach configurations were examined: approaches 25 
with 2 and 3 lanes, with and without 1-lane turn pockets. Their capacities were evaluated for all possible 26 
values of the input parameters (G and l), both under conventional and tandem control. For the sake of 27 
brevity, the latter was only analyzed for the case in which only one tandem lane is used; i.e., where its 28 
potential benefit is least. FIGURE 3 shows the result. Contour lines show the ratio of the partial tandem 29 
capacity over the maximal possible flow (GN). Shading shows the ratio of the partial tandem capacity 30 
over the conventional capacity, with lighter shades denoting greater benefits reaped by the tandem design. 31 
These figures can also be used to determine if a given pair of flows can be served with a given G. To do 32 
so, go to the appropriate figure and determine from the point with the relevant G and l whether the given 33 
total flow is larger or smaller than the capacity displayed for the point’s contour.  34 

Note that when G is very large (approaching 1) the tandem system performs worse than the 35 
conventional. This happens because the pre-signal then becomes the binding constraint. But for common 36 
settings with G around 0.5, the capacity increase is about 20% to 30%. This is encouraging because the 37 
benefit is obtained with only one tandem lane. On the other hand, the results in this sub-section are 38 
optimistic because they assume that vehicles discharge from the intersection at a deterministic rate. The 39 
next sub-section obtains more realistic results by relaxing this assumption. 40 
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 1 
(a)      (b) 2 

 3 
(c)      (d) 4 

FIGURE 3  Comparison of the deterministic version of capacities of conventional and tandem design. Contour lines show 5 
the ratio of the tandem capacity over the maximal possible flow; shading shows the ratio of the tandem capacity over the 6 
conventional capacity: (a) 2 lanes with no turn pocket (n = N = 2), 1 tandem lane; (b) 2 lanes with 1-lane turn pocket (n = 7 
2, N = 3), 1 tandem lane; (c) 3 lanes with no turn pocket (n = N = 3), 1 tandem lane; (d) 3 lanes with 1-lane turn pocket (n 8 
= 3, N = 4), 1 tandem lane. 9 

3.2. Stochastic Considerations 10 
The concepts discussed below are easier to understand if the cycle time (C) and the average discharge 11 
headway (H) are explicitly used as variables. Therefore, the special system of units we have been using, 12 
where these two variables took the value “1”, will not be used. Instead the results will be derived for an 13 
arbitrary system and then converted to the special system at the end. 14 

Refer to FIGURE 2a (full tandem) and consider what would happen if the LVs in the sorting area 15 
were unable to fully discharge in their signal sub-phase (call this a sub-phase failure.) The residual LVs 16 
would have to stop and wait for the next sub-phase. If they block all the lanes, no TVs would discharge in 17 
their sub-phase. Instead, these TVs would have to wait until the residual LVs have cleared the intersection. 18 
Since this will happen in the next cycle—ignoring the unlikely event that a batch of LVs may need more 19 
than 2 sub-phases to discharge—a full cycle would have been wasted for both vehicle types.  20 

It should be clear that if the TV sub-phase fails (and residual TVs block all lanes) then a cycle is 21 
still lost for the same reasons; and that if both the TV and TV sub-phases fail back to back, then 2 cycles 22 
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are lost. Thus, a sub-phase failure of either type, regardless of when it happens relative to other failures, 1 
wastes exactly one cycle. This conclusion is slightly pessimistic because some failures can allow some 2 
flow of partially blocked vehicles, as is always the case with partial tandem designs. Nonetheless, the 3 
result will be used without further refinement in order to produce conservative estimates of potential 4 
benefits.  5 

To manage failures, we will hold constant the signal sub-phase durations but will reduce the size 6 
of the vehicle batches that the pre-signal allows to pass in every cycle. (The pre-signal is assumed to be 7 
adaptive, normally releasing batches of fixed size but holding back all vehicles when a sub-phase has 8 
failed.) In the analysis that follows we will focus on a single lane and evaluate the probability of the 9 
lane’s failure for the given batch size. Then, conservatively assuming that all the lanes fail if this lane fails, 10 
we shall derive the expected LT and TV flow per cycle for the given batch sizes.  11 

To do this, let .sm be the size of the released batch in one of the lanes of the sorting area, where “.” 12 
stands for L or T. The expected number of vehicles such a lane can discharge in a sub-phase is 13 

. . /m G H= . If the coefficient of variation of the saturation headways is γ, then the probability of failure 14 
.p  is: 15 

 
.

1

. .. Pr .
.

s sm

i s
i

m mp H m H
m γ=

⎛ ⎞⎛ ⎞ −= > = Φ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑

,
 16 

where Φ(.) is the standard normal c.d.f.. This can be written as:  17 

 . ( .)p k= Φ − , where 
. ..

.

s

s

m mk
m γ
−=  and . . /m G H= . (6) 18 

The fixed number of vehicles released by the pre-signal in one of its regular cycles (i.e., a cycle 19 
without a failure) is: s s

L L T TN m N m+ . The average number of cycles required to serve these vehicles is 20 

(1+ pT + pL), because every failed sub-phase requires an extra cycle. Thus, the average flow through the 21 

signal is: ( ) ( )1s s
L L T T L TN m N m C p p+ + +⎡ ⎤⎣ ⎦ . This can be rewritten in terms of .k using (6): 22 

 
( ) ( )

( ) ( )( )
/ 1 / / / 1 / /

1
L L L L T T T Ts

L T

N G H k G H N G H k G H
q

C k k

γ γ− + −
=

+ Φ − + Φ −
.
 (7.1) 23 

To express this equation in the special unit system that was used in Section 3.1 without C or H, 24 
replace γ (which is the coefficient of variation of the time it takes to discharge one unit of vehicle quantity) 25 

by its counterpart 'γ  in the special unit system. This counterpart is ' / /C Hγ γ=  because in the 26 
special unit system a unit of vehicle quantity consists of C/H independent vehicles. Thus the equation 27 
becomes: 28 

 
( ) ( )

( ) ( )
1 '/ 1 '/

1
L L L L T T T Ts

L T

N G k G N G k G
q

k k

γ γ− + −
=

+ Φ − + Φ − .
 (7.2) 29 
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To find the optimum system configuration and signal settings, replace the objective function of 1 
TLP with (7.2) and solve the resulting problem. This stochastic version of the design problem will be 2 
called STLP. It provides a more realistic, albeit somewhat pessimistic assessment of the system than the 3 
TLP. [Note: the STLP does not include extra constraints in connection with the reduced batch sizes, .sm , 4 
because the deterministic pre-signal green times are always sufficient to accommodate them. To find .sm , 5 
first obtain .m  by inserting the optimal .G  in the last equality of (6), and then insert .m  and the optimum 6 

.k  in the second equality of (6).] 7 

Note the .k  variables only appear in the objective function of the STLP. Thus, to solve it, we first 8 
maximize (7.1) or (7.2) with respect to these variables and then solve for the remaining decision variables. 9 
Although the first step is analytically challenging, we find numerically from (7.1) that qs is a very smooth 10 
function of kL and kT around the optimum. For example, given H = 2.5 s, G/C = 0.5, and γ = 0.2, with C 11 
ranging from 30 s to 180 s, and l ranging from 0.1 to 0.9, we find that the value of qs for kL = kT = 2 12 
always exceeds 99% of the true optimum. Therefore, we fix these variables at kL = kT = 2 and then solve 13 
the STLP for the remaining variables as in section 3.1. This is done by evaluating all feasible 14 
combinations of NL and NT as in section 3.1.2. The resulting solution should be a conservative 15 
approximation of what might be expected in reality. FIGURE 4 shows these solutions for the same battery 16 
of problems as in FIGURE 3, using C/H = 48. Note that improvements are still achieved, albeit of a 17 
smaller magnitude.  18 

4. DISCUSSION 19 

4.1 Potential benefits 20 
Note from Figures 3 and 4 that low green ratios are problematic under stochastic considerations, even 21 
though they were fine in the deterministic cases. This happens because the signal processes (C/H) = 48 22 
vehicles per lane per cycle times the green ratio; i.e., less than 10 vehicles per lane per cycle if the green 23 
ratio is less than 0.2. Such low vehicle numbers magnify the detrimental impact of stochastic fluctuations. 24 
However, for more usual green ratios (0.4 < G < 0.5), the tandem system with 1 tandem lane increases 25 
capacity in all four lane configurations displayed in Figure 4. The benefit is greater if the intersection is 26 
narrow and has no turn pockets. In these cases capacity increases by more than 15% when G is between 27 
0.3 and 0.7, and l is below 0.2. But the improvement can exceed 30% for certain combinations of G and l.  28 

Greater benefits are achieved if one allows for more tandem lanes. This is shown in FIGURE 5, 29 
which evaluates the same intersection configurations as before, but with 2 or 3 tandem lanes. As the 30 
figure shows, improvements on the order of 50% can be obtained when G ≈ 0.5 and the turning ratios are 31 
significant. 32 
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 1 
(a)      (b) 2 

 3 
(c)      (d) 4 

FIGURE 4  Stochastic capacities of conventional and tandem design with C/H = 48. Contour lines show the ratio of the 5 
tandem capacity over the maximal possible flow; shading shows the ratio of the tandem capacity over the conventional 6 
capacity: (a) 2 lanes with no turn pocket (n = N = 2), 1 tandem lane; (b) 2 lanes with 1-lane turn pocket (n = 2, N = 3), 1 7 
tandem lane; (c) 3 lanes with no turn pocket (n = N = 3), 1 tandem lane; (d) 3 lanes with 1-lane turn pocket (n = 3, N = 4), 8 
1 tandem lane. 9 

 10 

The reader may complain that the conventional case is unduly penalized in these comparisons 11 
because LVs and TVs are not allowed to share lanes in the conventional design—and that a significant 12 
penalty would exaggerate the benefits of the tandem configuration. But this penalty turns out to be either 13 
non-existent or insignificant. Calculations show that a shared lane actually reduces the capacity of the 14 
conventional design unless the turning ratio is quite small—and in this case the tandem configuration 15 
would not be of much benefit anyway; see TABLE 1. This table shows critical turning ratios, which if 16 
exceeded negate the benefit of a shared lane in the conventional configuration. The reason for the 17 
ineffectiveness of shared lanes with a conventional design is that during the LV sub-phase, any TV in a 18 
shared lane would block the lane from discharging, and vice versa. The tandem strategy in essence 19 
removes the blocking; it even removes the limitation to use only one shared lane. This is why the capacity 20 
increases in FIGURE 5 are so large. 21 
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 1 
(a)      (b) 2 

 3 
(c)      (d) 4 

 5 
(e)      (f) 6 

FIGURE 5  Stochastic capacities of the conventional and tandem designs with C/H = 48. Contour lines show the ratio of 7 
the tandem capacity over the maximal possible flow; shading shows the ratio of the tandem capacity over the conventional 8 
capacity: (a) 2 lanes with no turn pocket (n = N = 2), 2 tandem lanes; (b) 2 lanes with 1-lane turn pocket (n = 2, N = 3), 2 9 
tandem lanes; (c) 3 lanes with no turn pocket (n = N = 3), 2 tandem lanes; (d) 3 lanes with 1-lane turn pocket (n = 3, N = 4), 10 
2 tandem lanes; (e) 3 lanes with no turn pocket (n = N = 3), 3 tandem lanes; (f) 3 lanes with 1-lane turn pocket (n = 3, N = 11 
4), 3 tandem lanes. 12 
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TABLE 1  Critical left-turning ratios on approaches without turn pockets for a shared lane to be beneficial 1 

Critical Left- 
Turning Ratio 

n = N = 2 n = N = 3 
C = 60 s C = 90 s C = 120 s C = 60 s C = 90 s C = 120 s 

G/C = 0.4 14% 8% 6% 7% 4% 3% 
G/C = 0.5 11% 6% 5% 5% 3% 2% 
G/C = 0.6 8% 5% 4% 4% 3% 2% 

 2 

4.2 Domain of application 3 
The tandem concept is not intended for intersections that are always undersaturated because in this case 4 
extra capacity is not needed; and the concept would actually delay some vehicles a little. It should only be 5 
applied to reduce or eliminate oversaturation. Ideally, the tandem system would only be activated during 6 
the oversaturated times of day, when it can produce a benefit. 7 

The tandem concept is not feasible with short blocks because it requires extra space to hold the 8 
transient queues of the vehicles released into the sorting area. Appendix A of (15) derives expressions for 9 
the lengths of both, the sorting area and the street section upstream of the pre-signal required to hold its 10 
queues without spill-backs. Notice that this total distance is roughly proportional to cycle length—it turns 11 
out to be about 100m per minute of cycle length. Since this combined distance cannot exceed the block 12 
length, short cycles may be needed if blocks are short. Fortunately, by increasing capacity, pre-signals 13 
allow cycles to be shortened. Short cycles can also benefit other users of the intersection, like bicyclists 14 
and pedestrians. 15 

Because the tandem concept is new, we do not know how people will react to it. Field tests are being 16 
planned to see how it would work in reality.  17 
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