User Tools

Site Tools


math104-f21:hw6

HW 6

Due next Thursday, 10/7, 6pm

1. Ross Ex 14.1 (briefly describe your reasoning)

2. Ross Ex 14.4

3. Let $\sum_{n=1}^\infty a_n$ be a series. Show that if $\sum_{m=1}^\infty a_{2m}$ and $\sum_{m=1}^\infty a_{2m-1}$ both converges, then $\sum_{n=1}^\infty a_n$ converges.

4. Show that if a series $\sum_n a_n$ converges absolutely, then $\sum_n a_n a_{n+1}$ converges absolutely.

5. Give an example of divergent series $\sum_n a_n$ of positive numbers $a_n$, such that $\lim_n a_{n+1} / a_n = \lim_n a_n^{1/n} = 1$. And give an example of convergent series $\sum_n b_n$ of positive numbers $b_n$, such that $\lim_n b_{n+1} / b_n = \lim_n b_n^{1/n} = 1$.

Solution

1. Ross 14.1. Determine which of the series converges and explain.

  • $\sum n^4/2^n$, converges, by ratio test. $a_n / a_{n-1} = (n/(n-1))^4 / 2 \to 1/2$
  • $\sum 2^n/n!$, converges, by ratio test. $a_n/a_{n-1} = 2/n \to 0$.
  • $\sum n^2/3^n$, converges, ratio test.
  • $\sum n!/(n^4+3)$, diverges, ratio test.
  • $\sum \cos^2 n/n^2$, converges absolutely. By comparing with $\sum 1/n^2$.
  • $\sum 1/\log n$, diverges. By comparing with $\sum_n 1/n$.

2. Ross 14.4

  • $\sum 1/(n + (-1)^n)^2$ converges, by comparing with $\sum_{n=2}^\infty 1/(n-1)^2$.
  • $\sum (\sqrt{n+1}-\sqrt{n}) = \sum \frac{1}{\sqrt{n+1}+\sqrt{n}} \geq \sum \frac{1}{2\sqrt{n}}$, hence divergent. Or the partial sum sequence $s_n = \sqrt{n+1}$, and is divergent.
  • $\sum n!/n^n$, we can do ratio test $$a_{n+1} / a_n = \frac{n+1}{(n+1)^{n+1}/n^n} = \frac{1}{(1+1/n)^n} \to 1/e < 1$$ Hence it is convergent.

3. Problem: Let $\sum_{n=1}^\infty a_n$ be a series. Show that if $\sum_{m=1}^\infty a_{2m}$ and $\sum_{m=1}^\infty a_{2m-1}$ both converges, then $\sum_{n=1}^\infty a_n$ converges.

Solution: Let $b_n = a_{2n}$ and $c_n = a_{2n-1}$, for $n=1,2,\cdots$. Let $B_N = \sum_{n=1}^N b_n$ and $C_N = \sum_{n=1}^N c_n$, and $A_N = \sum_{n=1}^N a_n$. Then $A_{2N} = B_N + C_N$, and $A_{2N+1} = B_N+C_{N+1}$. Let $B = \lim B_N, C= \lim C_N$. Hence $\lim A_{2N}$ and $\lim A_{2N+1}$ both exists and equals $B+C$, thus $\lim A_N$ exists and equals $B+C$.

4. Since $\sum_n a_n$ converges, $\lim a_n = 0$, hence $a_n$ is bounded, say $|a_n|<L$ for some $L >0$. Then $\sum_{n} |a_n a_{n+1}| \leq L \sum_n |a_n| < \infty$, hence converges absolutely.

5. divergent example $\sum_n 1/n$; convergent example, $\sum_n 1/n^2$.

math104-f21/hw6.txt · Last modified: 2022/01/11 08:36 by pzhou