User Tools

Site Tools


math121b:04-03

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math121b:04-03 [2020/04/02 19:49]
pzhou created
math121b:04-03 [2020/04/03 10:39] (current)
pzhou [Cylindrical Coordinate]
Line 11: Line 11:
 $$ \frac{1}{u}\Delta u =  \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R)) + \frac{1}{\Theta} \frac{1}{r^2} \d_\theta^2 \Theta + \frac{1}{Z} \d_z^2 Z. $$ $$ \frac{1}{u}\Delta u =  \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R)) + \frac{1}{\Theta} \frac{1}{r^2} \d_\theta^2 \Theta + \frac{1}{Z} \d_z^2 Z. $$
 such that such that
-$$ \d_\theta^2 \Theta(\theta) = \lambda_\theta \Theta(\theta) $$+$$ \Theta^{-1} \d_\theta^2 \Theta  = \lambda_\theta  $$
 $$  \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R))  + r^{-2} \lambda_\theta = \lambda_r $$ $$  \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R))  + r^{-2} \lambda_\theta = \lambda_r $$
-$$ \frac{1}{Z} \d_z^2 Z = \lambda_Z. $$+$$ \frac{1}{Z} \d_z^2 Z = \lambda_z. $$
  
-Step 1: Solve the eigenvalue problem for $\Theta$. Since $\Theta(\theta= \Theta(\theta+2\pi)$, the eigenvalues of $\theta$ are $\sin(n\theta), \cos(n\theta)$ with eigenvalues $\lambda_\theta = -n^2$ for integer $n \geq 0$. More precisely, for $\lambda_\theta=0$, the eigen-space is one-dimensional, and is generated by the constant function $1$; for $\lambda_\theta = -n^2$ for positive integer $n$, we have 2-dimensional eigenspaces $V_{\lambda_\theta}$, generated by $\sin(n\theta)\cos(n\theta)$+** eigenvalue problem for $\Theta$.** \\ 
 +$$\lambda_\theta = -n^2, \quad \Theta(\theta) \cos(n \theta), \sin(n \theta) $$ 
 + 
 +** eigenvalue problem for $R( r)$.** \\ 
 +Assume $\lambda_\theta = -n^2$, then we get 
 +$$ \d_r(\d_r(R)) + (-\lambda_r r^2 - n^2R = 0$$
  
-Step 2: Solve the eigenvalue problem for $R( r)$. The eigenvalue problem is 
-$$   \frac{1}{R} \frac{1}{r} \d_r(r \d_r(R))  + r^{-2} (-n^2) = \lambda_r $$ 
-where we plugged in $\lambda_\theta$'s possible values. Re-arranging terms, we get 
-$$ r \d_r(r \d_r(R)) + (-\lambda_r r^2 - n^2) R = 0 $$ 
 Compare with Bessel equation (12.2) from Boas Compare with Bessel equation (12.2) from Boas
-$$ x(xy')' + (x^2 - p^2) y = 0 $$+$$ x(xy')' + (x^2 - p^2) y = 0  \Rightarrow y(x) = a J_p(x) + b Y_p(x).$$ 
 +And notice that we want $R(0)$ finite, and $|Y_p(0)| = \infty$, we see 
 +$$ R( r) = \begin{cases} 
 + J_n(\sqrt{-\lambda_r} r) & \lambda_r \neq 0 \cr 
 + r^n & \lambda_r = 0 \cr  
 +\end{cases} 
 +$$ 
 +Note that, the $\sqrt{-\lambda_r}$ has an ambiguity of $\pm 1$ sign, but $J_n(x)=(-1)^n J_n(-x)$, hence you can take either sign for the square root. 
 + 
 +If $\lambda_r < 0$, say $\lambda_r = -k^2$ for $k>0$, then   
 +$$ R( r) = J_n(\sqrt{-\lambda_r} r) = J_n(kr) $$ 
 +$R( r) will oscillate as $r$ increase.  
 + 
 +If $\lambda_r > 0$, say $\lambda_r = k^2$ for $k>0$, then we will take  
 +$$ R( r) =  I_n(kr) = i^n J_n(i k r) $$ 
 +where $I_n(kr)$ is the 'hyperbolic' Bessel function. $R( r)$ looks like expoential function, with no oscillation.  
 + 
 +** Eigenvalue problem for $Z( z)$ ** \\ 
 +$$ Z(z) = \begin{cases} 
 + e^{\sqrt{\lambda_Z} z} & \lambda_z \neq 0 \cr 
 + 1, z & \lambda_z = 0 
 +\end{cases} 
 +$$ 
 + 
 +Hence, for any $\lambda_\theta = -n^2, \lambda_r \in \R, \lambda_z \in \R$, we have an eigen-function of Laplacian 
 +$$ u = R_{\lambda_r}( r) \Theta_n(\theta) Z_{\lambda_z}(z), \quad \Delta u = (\lambda_r + \lambda_z) u. $$ 
 +where the $R, \Theta, Z$ are given as above.  
 + 
 +==== Solve the Steady State Temperature problem ==== 
 +Suppose we are given a cylinder of radius $1$ and height $1$ ($z \in [0,1]$), and suppose we specify the temperature on the boundary of the cylinder. We need to solve the equation 
 +$$ \Delta u = 0 $$ 
 +satisfying the boundary condition.  
 + 
 +Note that $\lambda_z + \lambda_r = 0$, hence we will use $\lambda_r$ and $n$ to label the solutions.  
 + 
 +We consider two special cases of boundary value specification.  
 + 
 +** Case 1: Bottom and Side boundary value = 0. $u(r,\theta,z=1)$ is given ** 
 +Since $R( r)$ will have a zero at $r=1$, we should have $\lambda_r = -k^2 < 0$, and 
 +$$ u_{k,n}(r, \theta, z) = J_n(kr) \cos(n\theta) \sinh(k z), \quad J_n(kr) \sin(n\theta) \sinh(k z)$$ 
 +For each $n$, we need to choose those $k$ such that $J_n(k 1) = 0$, hence the choice of $k$ is discrete as well.  
 + 
 +More precisely, let $k_{n,m} > 0$ be the $m$-th root of $J_n(x)$. Then the general solution is 
 +$$ u(r,\theta,z) = \sum_{n=1}^\infty \sum_{m=1}^\infty J_n(k_{n,m} r) \sinh(k_{n,m} z)  (a_{n,m} \cos(n\theta) + b_{n,m} \sin(n\theta)) $$ 
 +Set $z=1$, we can use boundary condition to determine the coefficients $a_{n,m}, b_{n,m}$. Recall that 
 +$$ \int_0^1 J_n(k_{n,m_1} r) J_n(k_{n,m_2} r) rdr = 0, \quad m_1 \neq m_2 $$ 
 +Hence 
 +$$ a_{n,m} = \frac{\int_0^1 \int_{0}^{2\pi} u(r,\theta,1) J_n(k_{n,m} r) \cos(n\theta) r dr d\theta } {\sinh(k_{n,m}) \int_0^1 \int_{0}^{2\pi} J_n(k_{n,m} r)^2 \cos^2(n\theta) r dr d\theta } $$ 
 +and $b_{n,m}$ is obtained similarly, replacing $\cos(n\theta)$ by $\sin(n \theta)$.  
 + 
 + 
 +** Case 2: Bottom and Top face boundary value = 0. $u(r=1,\theta,z)$ is given ** 
 +This forces $\lambda_z < 0$. In particular, $Z(z) = \sin(m \pi z)$, hence $\lambda_z = -(m\pi)^2$ and $\lambda_r = (m \pi)^2$.  The general solution is written as  
 +$$ u(r,\theta, z) = \sum_{n=1}^\infty \sum_{m=1}^\infty I_n( m \pi r) \sin(m \pi z) (a_{n,m} \cos(n\theta) + b_{n,m} \sin(n\theta)) $$.  
 + 
 +We figure out the coefficient $a_{n,m}, b_{n,m}$ using the boundary value at $r=1$.  
 +$$ u(1, \theta, z) = \sum_{n=1}^\infty \sum_{m=1}^\infty I_n( m \pi) \sin(m \pi z) (a_{n,m} \cos(n\theta) + b_{n,m} \sin(n\theta)) $$.  
 +Hence by integrating $\theta, z$ we get 
 +$$ a_{n,m} = \frac{ \int_0^1 \int_0^{2\pi} u(1,\theta,z) \sin(m \pi z) \cos(n\theta) d \theta d z}{I_n( m \pi) \int_0^1 \int_0^{2\pi} \sin^2(m \pi z) \cos^2(n\theta) d \theta d z} $$ 
 +and similarly for $b_{n,m}$.  
 + 
 +** General case ** 
 +Decompose the boundary condition into three parts, top face, bottom face and side face. Break the original problem into 3 smaller problems in which only one part is non-zero. Then add up the solution from the three smaller problems. You end up with a solution that satisfies $\Delta u =0$ and has the desired boundary value.  
  
  
math121b/04-03.1585882142.txt.gz · Last modified: 2020/04/02 19:49 by pzhou