User Tools

Site Tools


math214:hw11

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math214:hw11 [2020/04/10 13:08]
pzhou created
math214:hw11 [2020/04/15 10:47] (current)
pzhou
Line 8: Line 8:
  
  
-2. Let $M$ be a mobius band of unit radius and width $2\delta$ in $\R^3$, that is, $M$ is the image of the map +2. Let $M$ be a Mobius band of unit radius and width $2\delta$ in $\R^3$, that is, $M$ is the image of the map 
-$$ (0, 2\pi] \times (-\delta, \delta) \mapsto \R^3(\phi, z) \mapsto ((1 + z \sin (\phi/2)) \cos \phi, (1 + z \cos (\phi/2)) \sin \phi, z \cos(\phi/2)) $$+$$ (0, 2\pi] \times (-\delta, \delta) \to \R^3$$ 
 +where 
 +$$ (\phi, z) \mapsto ((1 + z \sin (\phi/2) ) \cos \phi, (1 + z \sin (\phi/2) ) \sin \phi, z \cos(\phi/2) ) $$ 
 +Question: is the induced metric on $M$ flat? 
  
 +{{ :math214:mobius.png |}}
 +
 +3. (Wiggly band): Let $M$ be a submanifold of $\R^3$ defined by the following embedding
 +$$ \R \times (-\delta, \delta) \to \R^3 $$
 +$$ (t, z) \mapsto ( z \cos ( \sin t ) , z \sin (\sin t) ), t) $$
 +Prove that the metric is not flat. For example, compute the curvature associated to the Levi-Cevita connection, and show that it is not identically zero.  
 +{{ :math214:wiggly.png?600 |}}
 +
 +4. Exercise 4.1.20 in [Ni]. Let $G$ be a Lie group. $X, Y \in T_e G$. Show that the parallel transport of $X$ along $exp(t Y)$ is given by 
 +$$ L_{\exp( (t/2) Y )*}  R_{\exp( (t/2) Y )*} X. $$
 +
 +5. Compute the Killing form for $su(2)$ and $sl(2, \R)$. 
  
math214/hw11.1586549339.txt.gz · Last modified: 2020/04/10 13:08 by pzhou