User Tools

Site Tools


math214:hw11

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math214:hw11 [2020/04/10 13:26]
pzhou
math214:hw11 [2020/04/15 10:47] (current)
pzhou
Line 11: Line 11:
 $$ (0, 2\pi] \times (-\delta, \delta) \to \R^3$$ $$ (0, 2\pi] \times (-\delta, \delta) \to \R^3$$
 where where
-$$ (\phi, z) \mapsto ((1 + z \sin (\phi/2) ) \cos \phi, (1 + z \cos (\phi/2) ) \sin \phi, z \cos(\phi/2) ) $$+$$ (\phi, z) \mapsto ((1 + z \sin (\phi/2) ) \cos \phi, (1 + z \sin (\phi/2) ) \sin \phi, z \cos(\phi/2) ) $$
 Question: is the induced metric on $M$ flat?  Question: is the induced metric on $M$ flat? 
 +
 +{{ :math214:mobius.png |}}
  
 3. (Wiggly band): Let $M$ be a submanifold of $\R^3$ defined by the following embedding 3. (Wiggly band): Let $M$ be a submanifold of $\R^3$ defined by the following embedding
 $$ \R \times (-\delta, \delta) \to \R^3 $$ $$ \R \times (-\delta, \delta) \to \R^3 $$
 $$ (t, z) \mapsto ( z \cos ( \sin t ) , z \sin (\sin t) ), t) $$ $$ (t, z) \mapsto ( z \cos ( \sin t ) , z \sin (\sin t) ), t) $$
-Prove that the metric is not flat, i.e, the curvature associated to the Levi-Cevita connection is non-zero. +Prove that the metric is not flat. For examplecompute the curvature associated to the Levi-Cevita connection, and show that it is not identically zero.  
 {{ :math214:wiggly.png?600 |}} {{ :math214:wiggly.png?600 |}}
  
-4. +4. Exercise 4.1.20 in [Ni]. Let $G$ be a Lie group. $X, Y \in T_e G$. Show that the parallel transport of $X$ along $exp(t Y)$ is given by  
 +$$ L_{\exp( (t/2) Y )*}  R_{\exp( (t/2) Y )*} X. $$ 
 + 
 +5. Compute the Killing form for $su(2)$ and $sl(2, \R)$
  
math214/hw11.1586550412.txt.gz · Last modified: 2020/04/10 13:26 by pzhou