wu :: forums
« wu :: forums - Definite Integral »

Welcome, Guest. Please Login or Register.
Apr 28th, 2024, 7:32am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   putnam exam (pure math)
(Moderators: towr, Eigenray, SMQ, Grimbal, william wu, Icarus)
   Definite Integral
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Definite Integral  (Read 1918 times)
Barukh
Uberpuzzler
*****






   


Gender: male
Posts: 2276
Definite Integral  
« on: Jul 24th, 2004, 10:46pm »
Quote Quote Modify Modify

Evaluate the following integral:
 
[int]0[infty] sin(x)/x dx
IP Logged
Jack Huizenga
Guest

Email

Re: Definite Integral  
« Reply #1 on: Jul 25th, 2004, 12:37am »
Quote Quote Modify Modify Remove Remove

 
The answer: \pi/2.  The following solution requires knowledge of basic Fourier series.  If you own a LaTeX distribution, you can paste the following solution into a .tex document and compile it; this problem involves way too many symbols for a solution to be easily read otherwise.
 
Let $0<\delta < \pi$, and define $f_\delta:R\to R$ by
$f_\delta(x)=1$ if $|x|\leq \delta$, $f_\delta(x)=0$ if
$\delta<|x|\leq \pi$, and $f_\delta(x+2\pi)=f_\delta(x)$ for every
$x$. Then $f_\delta$ is periodic with period $2\pi$, and is the
pointwise limit of its Fourier series everywhere $f$ is
continuous, so for $x\neq \pm \delta$ we have
$$f_\delta(x)=\frac{a_0}{2}+\sum_{n=1}^\infty \left(a_n \cos nx+b_n\sin
nx\right),$$ where $$a_k =\frac{1}{\pi}\int_{-\pi}^{\pi}
f_\delta(t) \cos kt \, dt$$ $$b_k=\frac{1}{\pi}\int_{-\pi}^\pi
f_\delta(t)\sin kt \, dt.$$ Since the form of $f_\delta$ is
particularly nice, these integrals are very easy to calculate: for
$k>0$, we have
$$a_k=\frac{1}{\pi}\int_{-\pi}^\pi f_\delta(t) \cos kt \,
dt=\frac{1}{\pi}\int_{-\delta}^\delta \cos kt \,
dt=\left.\frac{\sin{kt}}{k\pi}\right|_{-\delta}^\delta=\frac{2\sin{k\del ta}}{k\pi}$$and$$
b_k= \frac{1}{\pi} \int_{-\pi}^\pi f_\delta(t) \sin kt \,
dt=\frac{1}{\pi}\int_{-\delta}^\delta \sin kt \,dt=0.$$ Also,
$$a_0=\frac{1}{\pi}\int_{-\pi}^\pi f_\delta(t)\, dt=\frac{2\delta}{\pi}.$$ Therefore
$$f_\delta(x)=\frac{\delta}{\pi}+\sum_{n=1}^\infty \frac{2\sin n\delta}{n\pi}
\cos(nx).$$ In particular,
$$1=f_\delta(0)=\frac{\delta}{\pi}+\sum_{n=1}^\infty \frac{2\sin
n\delta}{n\pi},$$ so $$\sum_{n=1}^\infty \frac{\sin
n\delta}{n}=\frac{\pi-\delta}{2}.$$
 
With this identity, we are ready to calculate the integral at
hand.  We note briefly that $\int_0^\infty \frac{\sin x}{x} \, dx$
clearly converges since the integrals over each interval $[n,n+1]$
form an alternating sequence whose terms successively decrease in
absolute value and converge to zero.  Then since $\frac{\sin
x}{x}$ is continuous on every interval $[0,N]$, we have that
$$\int_0^\infty \frac{\sin x}{x} \, dx = \lim_{\delta\to 0}
\sum_{n=1}^\infty \frac{\sin n\delta}{n\delta}\cdot
\delta=\lim_{\delta\to 0}\sum_{n=1}^\infty \frac{\sin
n\delta}{n}=\lim_{\delta\to 0}
\frac{\pi-\delta}{2}=\frac{\pi}{2}.$$
IP Logged
TenaliRaman
Uberpuzzler
*****



I am no special. I am only passionately curious.

   


Gender: male
Posts: 1001
Re: Definite Integral  
« Reply #2 on: Jul 25th, 2004, 12:52am »
Quote Quote Modify Modify

this is probably an easier way,
L(sinx) = 1/(s2+1)
L(sinx/x) = \int_{s}^{oo} f(s) ds = pi/2 - tan-1(s)
Use definition and let s tend to 0 and we are done!
IP Logged

Self discovery comes when a man measures himself against an obstacle - Antoine de Saint Exupery
Jack Huizenga
Guest

Email

Re: Definite Integral  
« Reply #3 on: Jul 25th, 2004, 2:11am »
Quote Quote Modify Modify Remove Remove

What is L in your solution?
IP Logged
Barukh
Uberpuzzler
*****






   


Gender: male
Posts: 2276
Re: Definite Integral   Jack_Sol.ps
« Reply #4 on: Jul 25th, 2004, 3:45am »
Quote Quote Modify Modify

Jack, I converted your solution to PostScript and attached it here, so everybody interested may easily read it. Also: if you register, you will be able to do the same thing.
 
on Jul 25th, 2004, 2:11am, Jack Huizenga wrote:
What is L in your solution?

It's Laplace transform (IMHO). And yes, I had this particular solution in mind. Bravo, TenaliRaman!  Cheesy
IP Logged
Sir Col
Uberpuzzler
*****




impudens simia et macrologus profundus fabulae

   
WWW

Gender: male
Posts: 1825
Re: Definite Integral  
« Reply #5 on: Jul 25th, 2004, 8:41am »
Quote Quote Modify Modify

on Jul 25th, 2004, 12:37am, Jack Huizenga wrote:
If you own a LaTeX distribution...

And if I don't?!  Cry
IP Logged

mathschallenge.net / projecteuler.net
Barukh
Uberpuzzler
*****






   


Gender: male
Posts: 2276
Re: Definite Integral  
« Reply #6 on: Jul 25th, 2004, 8:55am »
Quote Quote Modify Modify

on Jul 25th, 2004, 8:41am, Sir Col wrote:

And if I don't?!  Cry

...then you can see my previous post.   Cheesy
IP Logged
Sir Col
Uberpuzzler
*****




impudens simia et macrologus profundus fabulae

   
WWW

Gender: male
Posts: 1825
Re: Definite Integral  
« Reply #7 on: Jul 25th, 2004, 3:14pm »
Quote Quote Modify Modify

I can't view postscript either!  Sad
IP Logged

mathschallenge.net / projecteuler.net
towr
wu::riddles Moderator
Uberpuzzler
*****



Some people are average, some are just mean.

   


Gender: male
Posts: 13730
Re: Definite Integral  
« Reply #8 on: Jul 25th, 2004, 3:29pm »
Quote Quote Modify Modify

Surely you can download a viewer somewhere.. (gsview32.exe  Should also be linked via the miktex website somewhere, and otherwise if you download miktex you can compile and view it yourself Tongue )
« Last Edit: Jul 25th, 2004, 3:31pm by towr » IP Logged

Wikipedia, Google, Mathworld, Integer sequence DB
Eigenray
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 1948
Re: Definite Integral  
« Reply #9 on: Dec 8th, 2004, 9:56pm »
Quote Quote Modify Modify

Here's a nice proof just using Fubini's Theorem:
Integrate
f(x,y) = e-xysin x
over the region 0<x<a, 0<y:
[int]0a sin(x)/x dx = [pi]/2 - cos a [int]0[infty] e-ay/(1+y2)dy - sin a [int]0[infty] ye-ay/(1+y2)dy.
It follows that for a[ge]1,
|[int]0a sin(x)/x dx - [pi]/2| [le] 2/a.
 
(Found while skimming the appendix of Durrett's "Probability: Theory and Examples".)
IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board