Attention
Bowen JD, Alforque CV, Silver MA (2023) Effects of involuntary and voluntary attention on critical spacing in crowding. Journal of Vision 23(3):2:1-14. pdf
Theiss JD, Bowen JD, Silver MA (2021) Spatial attention enhances crowded stimulus encoding across modeled receptive fields by increasing redundancy of feature representations. Neural Computation 34:190-218. pdf
Bressler DW, Rokem A, Silver MA (2020) Slow endogenous fluctuations in cortical fMRI signals correlate with reduced performance in a visual detection task and are suppressed by spatial attention. Journal of Cognitive Neuroscience 32:85-99. pdf
Sheremata SL, Silver MA (2015) Hemisphere-dependent attentional modulation of human parietal visual field representations. Journal of Neuroscience 35:508-517. pdf
Hutchinson JB, Uncapher MR, Weiner KS, Bressler DW, Silver MA, Preston AR, Wagner AD (2014) Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex 24:49-66. pdf
Bressler DW, Fortenbaugh FC, Robertson LC, Silver MA (2013) Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner. Vision Research 85:104-112. pdf
Gratton C, Sreenivasan KK, Silver MA, D’Esposito M (2013) Attention selectively modifies the representation of individual faces in the human brain. Journal of Neuroscience 33:6979-6989. pdf
Bressler DW, Silver MA (2010) Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex. NeuroImage 53:526-533. pdf supplementary materials
Silver MA, Landau AN, Lauritzen TZ, Prinzmetal W, Robertson LC (2010) “Isolating human brain functional connectivity associated with a specific cognitive process”, in Human Vision and Electronic Imaging XV, edited by B.E. Rogowitz and T.N. Pappas, Proceedings of SPIE, Volume 7527, pp. 75270B-1 to 75270B-9. pdf
Lauritzen TZ, D’Esposito M, Heeger DJ, Silver MA (2009) Top-down flow of visual spatial attention signals from parietal to occipital cortex. Journal of Vision 9(13):18:1-14. pdf supplementary materials
Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends in Cognitive Sciences 13:488-495. pdf
Inhibitory visual processing in schizophrenia and amblyopia
Mukerji A, Byrne KN, Yang, E, Levi DM, Silver MA (2022) Visual cortical gamma-aminobutyric acid and perceptual suppression in amblyopa. Frontiers in Human Neuroscience 16:949395. pdf
Yoon JH, Sheremata S, Rokem A, Silver MA (2013) Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia. Frontiers in Psychology 4:681. pdf
Rokem A, Yoon JH, Ooms RE, Maddock RJ, Minzenberg MJ, Silver MA (2011) Broader visual orientation tuning in patients with schizophrenia. Frontiers in Human Neuroscience 5:127. pdf
Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, Carter CS (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. Journal of Neuroscience 30:3777-3781. pdf
Yoon JH, Rokem AS, Silver MA, Minzenberg MJ, Ursu S, Radland JD, Carter CS (2009) Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophrenia Bulletin 35:1078-1084. pdf
Cholinergic pharmacology
Harewood Smith AN, Challa JA, Silver MA (2017) Neither cholinergic nor dopaminergic enhancement improve spatial working memory precision in humans. Frontiers in Neural Circuits 11:94. pdf
Gratton C, Yousef S, Aarts E, Wallace DL, D’Esposito M, Silver MA (2017) Cholinergic, but not dopaminergic or noradrenergic, enhancement sharpens visual spatial perception in humans. Journal of Neuroscience 37:4405-4415. pdf
Kosovicheva AA, Sheremata SL, Rokem A, Landau AN, Silver MA (2012) Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding. Frontiers in Behavioral Neuroscience 6:61. pdf
Rokem A, Landau AN, Garg D, Prinzmetal W, Silver MA (2010) Cholinergic enhancement increases the effects of voluntary attention but does not affect involuntary attention. Neuropsychopharmacology 35:2538-2544. pdf
Silver MA, Shenhav A, D’Esposito M (2008) Cholinergic enhancement reduces spatial spread of visual responses in early visual cortex. Neuron 60:904-914. pdf supplementary materials
Binocular rivalry
Lawler EA, Silver MA (2023) Enhanced perceptual selection of predicted stimulus orientations following statistical learning. Journal of Vision 23(7):3:1-14. pdf
Piazza EA, Denison RN, Silver MA (2018) Recent cross-modal statistical learning influences visual perceptual selection. Journal of Vision 18(3):1:1-12. pdf
Piazza EA, Silver MA (2017) Relative spatial frequency processing drives hemispheric asymmetry in conscious awareness. Frontiers in Psychology 8:559. pdf
Denison RN, Sheynin J, Silver MA (2016) Perceptual suppression of predicted natural images. Journal of Vision 16(13):6:1-15. pdf
Piazza EA, Silver MA (2014) Persistent hemispheric differences in the perceptual selection of spatial frequencies. Journal of Cognitive Neuroscience 26:2021-2027. pdf
Bressler DW, Denison RN, Silver MA (2013) “High-level modulations of binocular rivalry: effects of stimulus configuration, spatial and temporal context, and observer state”, pp. 253-280. In: The Constitution of Visual Consciousness: Lessons from Binocular Rivalry, edited by S.M Miller. Amsterdam, The Netherlands: John Benjamins.
Denison RN, Silver MA (2012) Distinct contributions of the magnocellular and parvocellular visual streams to perceptual selection. Journal of Cognitive Neuroscience 24:246-259. pdf supplementary materials
Denison RN, Piazza EA, Silver MA (2011) Predictive context influences perceptual selection during binocular rivalry. Frontiers in Human Neuroscience 5:166. pdf
Perceptual learning
Chopin A, Silver MA, Sheynin Y, Ding H, Levi DM (2021) Transfer of perceptual learning from local stereopsis to global stereopsis in adults with amblyopia: a preliminary study. Frontiers in Neuroscience 15:719120. pdf
Byrne KN, McDevitt EA, Sheremata SL, Peters MW, Mednick SC, Silver MA (2020) Transient cholinergic enhancement does not significantly affect either the magnitude of selectivity of perceptual learning of visual texture discrimination. Journal of Vision 20(6):5:1-17. pdf
Levi DM, Li RW, Silver MA, Chung STL (2020) Sequential perceptual learning of letter identification and uncrowding in normal peripheral vision: Effects of task, training order, and cholinergic enhancement. Journal of Vision 20(4):24:1-13. pdf supplementary materials
Ahmadi M, McDevitt EA, Silver MA, Medick SC (2018) Perceptual learning induces changes in early and late visual evoked potentials. Vision Research 152:101-109. pdf
Chung STL, Li RW, Silver MA, Levi DM (2017) Donepezil does not enhance perceptual learning in adults with amblyopia: a pilot study. Frontiers in Neuroscience 11:448. pdf
McDevitt EA, Rokem A, Silver MA, Mednick SC (2014) Sex differences in sleep-dependent perceptual learning. Vision Research 99:172-179. pdf
Rokem A, Silver MA (2013) The benefits of cholinergic enhancement during perceptual learning are long-lasting. Frontiers in Computational Neuroscience 7:66. pdf
Rokem A, Silver MA (2010) Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. Current Biology 20:1723-1728. pdf supplementary materials
Functional subdivisions of the lateral geniculate nucleus (LGN)
Denison RN, Vu AT, Yacoub E, Feinberg DA, Silver MA (2014) Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. Neuroimage 102:358-369. pdf
Dopaminergic pharmacology
Rokem A, Landau AN, Prinzmetal W, Wallace DA, Silver MA, D’Esposito M (2012) Modulation of inhibition of return by the dopamine D2 receptor agonist bromocriptine depends on individual DAT1 genotype. Cerebral Cortex 22:1133-1138. pdf
Perception of visual space
Fortenbaugh FC, Silver MA, Robertson LC (2015) Individual differences in visual field shape modulate the effects of attention on the lower visual field advantage in crowding. Journal of Vision 15(2):19:1-15. pdf
Fortenbaugh FC, VanVleet TM, Silver MA, Robertson LC (2015) Spatial distortions in localization and midline estimation in hemianopia and normal vision. Vision Research 111:1-12. pdf
Fortenbaugh FC, Sanghvi S, Silver MA, Robertson LC (2012) Exploring the edges of visual space: The influence of visual boundaries on peripheral localization. Journal of Vision 12(2):19:1-18. pdf
Auditory perception
Piazza EA, Sweeny TD, Wessel D, Silver MA, Whitney D (2013) Humans use summary statistics to perceive auditory sequences. Psychological Science 24:1389-1397. pdf
Motion perception
Rokem A, Silver MA (2009) A model of encoding and decoding in V1 and MT accounts for motion perception anisotropies in the human visual system. Brain Research 1299:3-16. pdf